Bài 1 trang 51 SGK Hình học 12Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi S là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông ABCD Đề bài Cho hình lập phương \(\displaystyle ABCD.A'B'C'D'\) có cạnh bằng \(\displaystyle a\). Gọi \(\displaystyle S\) là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông \(\displaystyle ABCD\) và \(\displaystyle A'B'C'D'\). Diện tích \(\displaystyle S\) là: (A) \(\displaystyle πa^2\); (B) \(\displaystyle πa^2\sqrt 2 \) ; (C) \(\displaystyle πa^2\sqrt 3 \); (D) \(\displaystyle {{\pi {{\rm{a}}^2}\sqrt 2 } \over 2}\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Diện tích xung quanh của hình trụ \({S_{xq}} = 2\pi Rh\), trong đó \(R;h\) lần lượt là bán kính đáy và độ dài đường cao của hình trụ. Hình trụ đã cho có đường cao bằng cạnh của hình lạp phương và bán kính đáy là bán kính đường tròn ngoại tiếp hình lập phương cạnh \(a\). Lời giải chi tiết Xét tam giác vuông ABC có: \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \) Hình trụ là hình ngoại tiếp hình vuông cạnh \(a\) nên có đường kính \( a\sqrt2\) đường cao của hình trụ là \(a\) \( \Rightarrow R = \frac{{a\sqrt 2 }}{2}\) \( \Rightarrow {S_{xq}} = 2\pi Rh = 2\pi .\frac{{a\sqrt 2 }}{2}.a = \pi {a^2}\sqrt 2 \) Chọn (B). HocTot.XYZ
|