Bài 19 trang 28 SGK Hình học 12 Nâng cao

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại A, AC = b. . Đường thẳng BC’ tạo với mp(AA’C’C) một góc . a) Tính độ dài đoạn thẳng AC. b) Tính thể tích khối lăng trụ đã cho.

Lựa chọn câu để xem lời giải nhanh hơn

Cho khối lăng trụ đứng \(ABC.A’B’C’\) có đáy là tam giác \(ABC\) vuông tại \(A, AC = b\). \(\widehat {ACB} = {60^0}\). Đường thẳng \(BC’\) tạo với mp \((AA’C’C)\) một góc \({30^0}\).

LG a

Tính độ dài đoạn thẳng \(AC'\).

Phương pháp giải:

- Góc giữa đường thẳng và mp bằng góc giữa đt và hình chiếu của nó trên mp.

- Tính AC' dựa và tỉ số lượng giác của góc nhọn trong tam giác vuông.

Lời giải chi tiết:

Ta có: \(BA \bot AC\) và \(BA \bot AA'\) nên \(BA \bot \left( {ACC'A'} \right)\)
Vậy \(AC’\) là hình chiếu của \(BC’\) trên mp \((ACC’A’)\) nên góc giữa BC' và (ACC'A') bằng góc giữa BC' và AC' và bằng \(\widehat {AC'B} = {30^0}\)
Trong tam giác vuông \(BAC’\), ta có: \(\cot {30^0} = {{AC'} \over {AB}}\)

\(\Rightarrow AC' = AB.\cot{30^0} \)

Tam giác ABC vuông tại A có \(AB= AC.\tan {60^0} \) \(= b\sqrt 3 \)

Do đó \(\Rightarrow AC' = AB.\cot{30^0} \) \(= b\sqrt 3 .\sqrt 3=3b\)

LG b

Tính thể tích khối lăng trụ đã cho.

Phương pháp giải:

Thể tích lăng trụ V=Bh.

Lời giải chi tiết:

Trong tam giác vuông \(ACC’\), ta có: \(CC{'^2} = AC{'^2} - A{C^2} \) \(= 9{b^2} - {b^2} = 8{b^2} \)

\(\Rightarrow CC' = 2\sqrt 2 b\)
Diện tích đáy là: \({S_{ABC}} = {1 \over 2}AB.AC \) \( ={1 \over 2}b\sqrt 3 .b = {{{b^2}\sqrt 3 } \over 2}\)
Thể tích khối lăng trụ \(V = S.h \) \(= {{{b^2}\sqrt 3 } \over 2}.2\sqrt 2 b = {b^3}\sqrt 6 \)

HocTot.XYZ

  • Bài 20 trang 28 SGK Hình học 12 Nâng cao

    Cho khối lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh a, điểm A' cách đều ba điểm A, B, c, cạnh bên AA' tạo với mặt phẳng đáy một góc 60°. a) Tính thể tích của khối lăng trụ đó. b) Chứng minh rằng mặt bên BCCB' là một hình chữ nhật. c) Tính tổng diện tích các mặt bên của hình lăng trụ ABC.A'B'C (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).

  • Bài 21 trang 28 SGK Hình học 12 Nâng cao

    Cho điểm M nằm trong hình tứ diện đều ABCD. Chứng minh rằng tổng các khoảng cách từ M tới bốn mặt của hình tứ diện là một số không phụ thuộc vào vị trí của điểm M. Tổng đó bằng bao nhiêu nếu cạnh của tứ diện đều bằng a ?

  • Bài 22 trang 28 SGK Hình học 12 Nâng cao

    Cho khối lăng trụ tam giác đều ABC.A'B’C. Gọi M là trung điểm của AA’. Mặt phẳng đi qua M, B’, C chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.

  • Bài 23 trang 29 SGK Hình học 12 Nâng cao

    Cho khối chóp tam giác S.ABC. Trên ba đường thẳng SA, SB,SC lần lượt lấy ba điểm A’, B’, C' khác với S. Gọi V và V’ lần lượt là thể tích của các khối chóp S.ABC và S.A'B'C'. Chứng minh rằng:

  • Bài 24 trang 29 SKG Hình học 12 Nâng cao

    Khối chóp S.ABCD có đáy là hình bình hành, M là trung điểm của cạnh SC. Mặt phẳng (P) đi qua AM, song song với BD chia khối chóp thành hai phần. Tính tỉ số thể tích cùa hai phần đó.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close