Bài 20 trang 82 SGK Đại số và Giải tích 12 Nâng cao

Tìm số thực, thỏa mãn từng điều kiện sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm số thực \(\alpha \), thỏa mãn từng điều kiện sau:

LG a

\({1 \over 2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1\,\,\left( {a > 0} \right);\)     

Lời giải chi tiết:

\({1 \over 2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1 \)

\(\Leftrightarrow {a^\alpha } + {a^{ - \alpha }} - 2 = 0\)

\(\begin{array}{l}
\Leftrightarrow {a^{2\alpha }} + {a^{ - \alpha }}.{a^\alpha } - 2{a^\alpha } = 0\\
\Leftrightarrow {a^{2\alpha }} + 1 - 2{a^\alpha } = 0\\
\Leftrightarrow {\left( {{a^\alpha }} \right)^2} - 2{a^\alpha } + 1 = 0\\
\Leftrightarrow {\left( {{a^\alpha } - 1} \right)^2} = 0\\
\Leftrightarrow {a^\alpha } - 1 = 0\\
\Leftrightarrow {a^\alpha } = 1(*)
\end{array}\)

- Nếu \(a \ne \,1\) thì (*) \( \Leftrightarrow  \alpha  = 0\)

- Nếu \(a = 1\) thì (*) \( \Leftrightarrow \alpha \) là số thực tùy ý.

Cách khác:

\({1 \over 2}\left( {{a^\alpha } + {a^{ - \alpha }}} \right) = 1 \)

\(\Leftrightarrow {a^\alpha } + {a^{ - \alpha }} - 2 = 0\)

\( \Leftrightarrow {\left( {{a^{\frac{\alpha }{2}}}} \right)^2} - 2.{a^{\frac{\alpha }{2}}}.{a^{ - \frac{\alpha }{2}}} + {\left( {{a^{ - \frac{\alpha }{2}}}} \right)^2} = 1\)

\(\Leftrightarrow {\left( {{a^{{\alpha  \over 2}}} - {a^{ - {\alpha  \over 2}}}} \right)^2} = 0\)

\(\Leftrightarrow {a^{{\alpha  \over 2}}} - {a^{ - {\alpha  \over 2}}}=0\)

\(\Leftrightarrow {a^{{\alpha  \over 2}}} = {a^{ - {\alpha  \over 2}}}\)(*)

- Nếu \(a \ne \,1\) thì (*) \( \Leftrightarrow {\alpha  \over 2} =  - {\alpha  \over 2} \Leftrightarrow \alpha  = 0\)

- Nếu \(a = 1\) thì (*) \( \Leftrightarrow \alpha \) là số thực tùy ý.

LG b

\({3^{\left| \alpha  \right|}} < 27.\)

Phương pháp giải:

Sử dụng so sánh: Nếu a > 1 thì \({a^m} < {a^n} \Leftrightarrow m < n\)

Lời giải chi tiết:

\({3^{\left| \alpha  \right|}} < 27 \Leftrightarrow {3^{\left| \alpha  \right|}} < {3^3} \)

\(\Leftrightarrow \left| \alpha  \right| < 3 \) (vì 3 > 1)

\(\Leftrightarrow  - 3 < \alpha  < 3.\)

HocTot.XYZ

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close