Bài 3 trang 104 SGK Hình học 11Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có SA=SB=SC=SD.Gọi O là giao điểm của AC và BD. Đề bài Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có \(SA=SB=SC=SD\).Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Chứng minh rằng: a) Đường thẳng \(SO\) vuông góc với mặt phẳng \((ABCD)\); b) Đường thẳng \( AC\) vuông góc với mặt phẳng \((SBD)\) và đường thẳng \(BD\) vuông góc với mặt phẳng \(SAC\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng kết quả của định lí: Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy. Lời giải chi tiết a) \(SA=SC\) nên tam giác \(SAC\) cân tại \(S\). \(O\) là giao của hai đường chéo hình bình hành nên \(O\) là trung điểm của \(AC\) và \(BD\). Do đó \(SO\) vừa là trung tuyến đồng thời là đường cao trong tam giác \(SAC\) hay \(SO\bot AC\) Chứng minh tương tự ta được: \(SO\bot BD\) Ta có: \(\left\{ \begin{array}{l} b) \(ABCD\) là hình thoi nên \(AC\bot BD\) \(\left\{ \begin{array}{l} \(\left\{ \begin{array}{l} HocTot.XYZ
|