Bài 3 trang 156 SGK Đại số và Giải tích 11

Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

LG a

\(y = x^2+ x\) tại \(x_0= 1\)

Phương pháp giải:

Bước 1: Giả sử \(\Delta x\) là số gia của đối số tại \(x_0\), tính \(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\).

Bước 2: Lập tỉ số \(\dfrac{{\Delta y}}{{\Delta x}}\).

Bước 3: Tìm \(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\).

Kết luận \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\).

Lời giải chi tiết:

Giả sử \(∆x\) là số gia của số đối tại \(x_0 = 1\). Ta có:

\(\begin{array}{l}
\Delta y = f\left( {1 + \Delta x} \right) - f\left( 1 \right)\\
\,\,\,\,\,\, = {\left( {1 + \Delta x} \right)^2} + \left( {1 + \Delta x} \right) - {1^2} - 1\\
\,\,\,\,\, = 1 + 2\Delta x + {\left( {\Delta x} \right)^2} + 1 + \Delta x - 2\\
\,\,\,\,\, = \Delta x\left( {\Delta x + 3} \right)\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \Delta x + 3\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\Delta x + 3} \right) = 3
\end{array}\)

Vậy \(f'(1) = 3\).

Cách khác:

\(\begin{array}{l}
f\left( x \right) = {x^2} + x \Rightarrow f\left( 1 \right) = 2\\
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} + x - 2}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x - 1}}\\
= \mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right)\\
= 1 + 2\\
= 3\\
\Rightarrow f'\left( 1 \right) = 3
\end{array}\)

LG b

\(y =  \dfrac{1}{x}\) tại \(x_0= 2\)

Lời giải chi tiết:

Giả sử \(∆x\) là số gia của số đối tại \(x_0= 2\). Ta có:

\(\begin{array}{l}
\Delta y = f\left( {2 + \Delta x} \right) - f\left( 2 \right)\\
\,\,\,\,\,\,\, = \dfrac{1}{{2 + \Delta x}} - \dfrac{1}{2}\\
\,\,\,\,\,\,\, = \dfrac{{2 - 2 - \Delta x}}{{2\left( {2 + \Delta x} \right)}} = \dfrac{{ - \Delta x}}{{2\left( {2 + \Delta x} \right)}}\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{ - 1}}{{2\left( {2 + \Delta x} \right)}}\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\dfrac{{ - 1}}{{2\left( {2 + \Delta x} \right)}}} \right) = \dfrac{{ - 1}}{{2.2}} = - \dfrac{1}{4}
\end{array}\)

Vậy \(f'(2) = -   \dfrac{1}{4}\).

Cách khác:

\(\begin{array}{l}
f\left( x \right) = \dfrac{1}{x} \Rightarrow f\left( 2 \right) = \dfrac{1}{2}\\
\Rightarrow \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - f\left( 2 \right)}}{{x - 2}}\\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\dfrac{1}{x} - \dfrac{1}{2}}}{{x - 2}}\\
= \mathop {\lim }\limits_{x \to 2} \dfrac{{\dfrac{{2 - x}}{{2x}}}}{{ - \left( {2 - x} \right)}}\\
= \mathop {\lim }\limits_{x \to 2} \left( { - \dfrac{1}{{2x}}} \right)\\
= - \dfrac{1}{{2.2}} = - \dfrac{1}{4}\\
\Rightarrow f'\left( 2 \right) = - \dfrac{1}{4}
\end{array}\)

LG c

\(y = \dfrac{x+1}{x-1}\) tại \(x_0 = 0\)

Lời giải chi tiết:

Giả sử \(∆x\) là số gia của số đối tại \(x_0= 0\).Ta có:

\(\begin{array}{l}
\Delta y = f\left( {\Delta x} \right) - f\left( 0 \right)\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1}}{{\Delta x - 1}} - \dfrac{{0 + 1}}{{0 - 1}}\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1}}{{\Delta x - 1}} + 1\\
\,\,\,\,\,\,\, = \dfrac{{\Delta x + 1 + \Delta x - 1}}{{\Delta x - 1}} = \dfrac{{2\Delta x}}{{\Delta x - 1}}\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{2}{{\Delta x - 1}}\\
\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\dfrac{2}{{\Delta x - 1}}} \right) = \dfrac{2}{{ - 1}} = - 2
\end{array}\)

Vậy \(f'(0) = -2\).

Cách khác:

\(\begin{array}{l}
f\left( x \right) = \dfrac{{x + 1}}{{x - 1}} \Rightarrow f\left( 0 \right) = - 1\\
\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{x + 1}}{{x - 1}} + 1}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{x + 1 + x - 1}}{{x - 1}}}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{2x}}{{x - 1}}}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{x - 1}}\\
= \dfrac{2}{{0 - 1}} = - 2\\
\Rightarrow f'\left( 0 \right) = - 2
\end{array}\)

 HocTot.XYZ

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close