Giải bài 3 trang 37 SGK Đại số và Giải tích 11

Giải các phương trình sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(si{n^2}{x \over 2} - {\rm{ }}2cos{x \over 2} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\);

Phương pháp giải:

+) Sử dụng công thức \({\sin ^2}\frac{x}{2} = 1 - {\cos ^2}\frac{x}{2}\)

+) Đặt ẩn phụ \(t = \cos \frac{x}{2}\,\,\,\left( {t \in \left[ { - 1;1} \right]} \right)\), đưa về phương trình bậc hai ẩn t, giải phương trình suy ra các nghiệm t.

+) Giải các phương trình lượng giác cơ bản của cos: \(\cos x = \cos \alpha  \Leftrightarrow x =  \pm \alpha  + k2\pi \,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}
\,\,{\sin ^2}\frac{x}{2} - 2\cos \frac{x}{2} + 2 = 0\\
\Leftrightarrow 1 - {\cos ^2}\frac{x}{2} - 2\cos \frac{x}{2} + 2 = 0\\
\Leftrightarrow {\cos ^2}\frac{x}{2} + 2\cos \frac{x}{2} - 3 = 0
\end{array}\)

Đặt \(t = {\rm{ }}cos{x \over 2},{\rm{ }}t \in \left[ { - 1{\rm{ }};{\rm{ }}1} \right]\) thì phương trình trở thành

\(\begin{array}{l}{t^2} + 2t - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\,\,\,\left( {tm} \right)\\t = - 3\,\,\,\left( {ktm} \right)\end{array} \right.\\Khi\,\,t = 1 \Leftrightarrow \cos \frac{x}{2} = 1 \Leftrightarrow \frac{x}{2} = k2\pi\\ \Leftrightarrow x = k4\pi \,\,\,\left( {k \in Z} \right)\end{array}\)

Vậy nghiệm của phương trình là: \(x = k4\pi \,\,\,\left( {k \in Z} \right)\).

LG b

\(8co{s^2}x{\rm{ }} + {\rm{ }}2sinx{\rm{ }} - {\rm{ }}7{\rm{ }} = {\rm{ }}0\);

Phương pháp giải:

+) Sử dụng công thức \({\cos ^2}x = 1 - {\sin ^2}x\)

+) Đặt ẩn phụ \(t = \sin x\,\,\,\left( {t \in \left[ { - 1;1} \right]} \right)\), đưa về phương trình bậc hai ẩn t, giải phương trình suy ra các nghiệm t.

+) Giải các phương trình lượng giác cơ bản của sin: \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\,\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

\(\begin{array}{l}\,\,8{\cos ^2}x + 2\sin x - 7 = 0\\\Leftrightarrow 8\left( {1 - {{\sin }^2}x} \right) + 2\sin x - 7 = 0\\\Leftrightarrow 8{\sin ^2}x - 2\sin x - 1 = 0\end{array}\)

Đặt \(t = sinx, t ∈ [-1 ; 1]\) thì phương trình trở thành

\(\begin{array}{l}8{t^2} - 2t - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{1}{2}\\t = - \frac{1}{4}\end{array} \right.\,\,\,\left( {tm} \right)\\+ )\,\,t = \frac{1}{2} \Leftrightarrow \sin x = \frac{1}{2}  \\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in Z} \right)\\+ )\,\,t = - \frac{1}{4} \Leftrightarrow \sin x = - \frac{1}{4} \\ \Leftrightarrow \left[ \begin{array}{l}x = \arcsin \left( { - \frac{1}{4}} \right) + k2\pi \\x = \pi - \arcsin \left( { - \frac{1}{4}} \right) + k2\pi \end{array} \right.\,\,\,\left( {k \in Z} \right)\end{array}\)

LG c

\(2ta{n^2}x{\rm{ }} + {\rm{ }}3tanx{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\);

Phương pháp giải:

+) Tìm ĐKXĐ

+) Đặt ẩn phụ \(t=tanx\), đưa về phương trình bậc hai ẩn t, giải phương trình suy ra các nghiệm t.

+) Giải phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

ĐK: \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\,\left( {k \in Z} \right)\)

Đặt \(t = tanx\) thì phương trình trở thành 

\(2{t^{2}} + {\rm{ }}3t{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow \left[ \matrix{
t = - 1 \hfill \cr 
t = - {1 \over 2} \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{
\tan x = - 1 \hfill \cr 
\tan x = - {1 \over 2} \hfill \cr} \right.\)

\( \Leftrightarrow \left[ \matrix{
x = - {\pi \over 4} + k\pi \hfill \cr 
x = \arctan \left( { - {1 \over 2}} \right) + k\pi \hfill \cr} \right.(k \in \mathbb{Z}) (tm)\)

LG d

\(tanx{\rm{ }} - {\rm{ }}2cotx{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\).

Phương pháp giải:

+) Tìm ĐKXĐ

+) Sử dụng công thức \(\cot x = \frac{1}{{\tan x}}\).

+) Đặt ẩn phụ \(t=tanx\), quy đồng, đưa về phương trình bậc hai ẩn t, giải phương trình suy ra các nghiệm t.

+) Giải phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \,\,\,\left( {k \in Z} \right)\)

Lời giải chi tiết:

ĐK: \(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne k\pi \\x \ne \frac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow x \ne \frac{{k\pi }}{2}\,\,\left( {k \in Z} \right)\)

\(\begin{array}{l}\,\,\,\,\tan x - 2\cot x + 1 = 0\\\Leftrightarrow \tan x - \frac{2}{{\tan x}} + 1 = 0\\\Leftrightarrow {\tan ^2}x + \tan x - 2 = 0\end{array}\)

Đặt \(t = tanx\) thì phương trình trở thành

\(\begin{array}{l}{t^2} + t - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = - 2\end{array} \right. \\ \Leftrightarrow\left[ \begin{array}{l}x = \frac{\pi }{4} + k\pi \\x = \arctan \left( { - 2} \right) + k\pi \end{array} \right.\,\,\left( {k \in Z} \right) (tm)\end{array}\)

HocTot.XYZ

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close