Giải bài 5 trang 10 SGK Giải tích 12Chứng minh các bất đẳng thức sau: Video hướng dẫn giải LG a Chứng minh các bất đẳng thức sau: \(\tan x>x\ \ \left( 0<x<\frac{\pi }{2} \right).\) Phương pháp giải: +) Chuyển vế tất cả các biểu thức chứa biến sang vế trái sau đó so sánh hàm số \(y\left( x \right)\) với 0. +) Tính đạo hàm bậc nhất của hàm số \(y\left( x \right)\) và khảo sát hàm số \(y\left( x \right)\) trên các khoảng đề bài đã cho. +) Dựa vào tính đơn điệu của hàm số để kết luận bài toán. Lời giải chi tiết: \(\tan x>x\ \ \left( 0<x<\dfrac{\pi }{2} \right).\) Xét hàm số: \(y=f\left( x \right)=\tan x-x\) với \(x\in \left( 0;\ \dfrac{\pi }{2} \right).\) Ta có: \(y'=\dfrac{1}{{{\cos }^{2}}x}-1=\dfrac{1-{{\cos }^{2}}x}{{{\cos }^{2}}x}=\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}\) \(={{\tan }^{2}}x>0,\forall x\in \left( 0;\dfrac{\pi }{2} \right)\) Vậy hàm số luôn đồng biến trên \(\left( 0;\dfrac{\pi }{2} \right).\) \(\Rightarrow \forall \ x\in \left( 0;\dfrac{\pi }{2} \right) \text{ta có} \, f\left( x \right)>f\left( 0 \right) \\ \Leftrightarrow \tan x-x>\tan 0-0 \\ \Leftrightarrow \tan x-x>0 \\ \Leftrightarrow \tan x>x\ \ \left( dpcm \right).\) LG b \(\tan x>x+\dfrac{{{x}^{3}}}{3}\ \ \left( 0<x<\frac{\pi }{2} \right).\) Phương pháp giải: +) Chuyển vế tất cả các biểu thức chứa biến sang vế trái sau đó so sánh hàm số \(y\left( x \right)\) với 0. +) Tính đạo hàm bậc nhất của hàm số \(y\left( x \right)\) và khảo sát hàm số \(y\left( x \right)\) trên các khoảng đề bài đã cho. +) Dựa vào tính đơn điệu của hàm số để kết luận bài toán. Lời giải chi tiết: \(\tan x>x+\dfrac{{{x}^{3}}}{3}\ \ \left( 0<x<\dfrac{\pi }{2} \right).\) Xét hàm số: \(y=g\left( x \right)=\tan x-x-\dfrac{{{x}^{3}}}{3}\) với \(x\in \left( 0;\ \dfrac{\pi }{2} \right).\) Ta có: \(y'=\dfrac{1}{{{\cos }^{2}}x}-1-{{x}^{2}}=1+{{\tan }^{2}}x-1-{{x}^{2}}\\ ={{\tan }^{2}}x-{{x}^{2}}=\left( \tan x-x \right)\left( \tan x+x \right).\) Với \(\forall \ x\in \left( 0;\dfrac{\pi }{2} \right)\Rightarrow \tan x>0\) nên ta có: \(\tan x+x>0\) và \(\tan x-x>0\) (theo câu a) \(\Rightarrow y'>0\,\,\forall x\in \left( 0;\dfrac{\pi }{2} \right)\) Vậy hàm số \(y=g\left( x \right)\) đồng biến trên \(\left( 0;\dfrac{\pi }{2} \right)\Rightarrow g\left( x \right)>g\left( 0 \right).\) \(\Leftrightarrow \tan x-x-\dfrac{{{x}^{3}}}{3}>\tan 0-0-0 \\ \Leftrightarrow \tan x-x-\dfrac{{{x}^{3}}}{3}>0 \\ \Leftrightarrow \tan x>x+\dfrac{{{x}^{3}}}{3}\ \ \ \left( dpcm \right).\) HocTot.XYZ
|