Bài 69 trang 124 SGK giải tích 12 nâng cao

Giải các phương trình sau:

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(\eqalign{
& \,{\log ^2}{x^3} - 20\log \sqrt x + 1 = 0 \cr} \)       

Lời giải chi tiết:

Điều kiện: \(x> 0\)

\(\eqalign{
& {\log ^2}{x^3} - 20\log \sqrt x + 1 = 0 \cr& \Leftrightarrow {\left( {\log {x^3}} \right)^2} - 20.\log {x^{\frac{1}{2}}} + 1 = 0 \cr&\Leftrightarrow {\left( {3\log x} \right)^2} - 20.\frac{1}{2}\log x + 1 = 0 \cr 
& \Leftrightarrow 9{\log ^2}x - 10\log x + 1 = 0\cr& \Leftrightarrow \left[ \matrix{
\log x = 1 \hfill \cr 
\log x = {1 \over 9} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 10 \hfill \cr 
x = {10^{{1 \over {9}}}} = \root 9 \of {10} \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {10;\root 9 \of {10} } \right\}\)

Chú ý:

Có thể đặt \(t=\log x\) để giải phương trình như sau:

\(\begin{array}{l}
9{t^2} - 10t + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}
t = 1\\
t = \frac{1}{9}
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
\log x = 1\\
\log x = \frac{1}{9}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 10\\
x = {10^{\frac{1}{9}}}
\end{array} \right.
\end{array}\)

LG b

\(\,{{{{\log }_2}x} \over {{{\log }_4}2x}} = {{{{\log }_8}4x} \over {{{\log }_{16}}8x}}\)

Lời giải chi tiết:

\({{{{\log }_2}x} \over {{{\log }_4}2x}} = {{{{\log }_8}4x} \over {{{\log }_{16}}8x}}\,\,\,\,\,\left( 1 \right)\)

Điều kiện: \(x > 0\), \(x \ne {1 \over 2},\,x \ne {1 \over 8}\)
Ta có: \({\log _4}2x = {{{{\log }_2}2x} \over {{{\log }_2}4}} = {{1 + {{\log }_2}x} \over 2}\)

\(\eqalign{
& {\log _8}4x = {{{{\log }_2}4x} \over {{{\log }_2}8}} = {{2 + {{\log }_2}x} \over 3} \cr 
& {\log _{16}}8x = {{{{\log }_2}8x} \over {{{\log }_2}16}} = {{3 + {{\log }_2}x} \over 4} \cr} \)

Đặt \(t = {\log _2}x\) thì (1) thành:

\(\dfrac{t}{{\frac{{1 + t}}{2}}} = \dfrac{{\frac{{2 + t}}{3}}}{{\frac{{3 + t}}{4}}}\)

\( \Leftrightarrow t.\frac{{3 + t}}{4} = \frac{{1 + t}}{2}.\frac{{2 + t}}{3}\)

\( \Leftrightarrow 6t\left( {3 + t} \right) = 4\left( {1 + t} \right)\left( {2 + t} \right)\)

\(\eqalign{
& \Leftrightarrow 18t + 6{t^2} = 8 + 12t + 4{t^2} \cr&\Leftrightarrow 2{t^2} + 6t - 8 = 0 \cr&\Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = - 4 \hfill \cr} \right. \cr 
& \Rightarrow \left[ \matrix{
{\log _2}x = 1 \hfill \cr 
{\log _2}x = - 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr 
x = {2^{ - 4}} = {1 \over {16}} \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {2;{1 \over {16}}} \right\}\)

Chú ý:

Có thể trình bày như sau:

LG c

\(\eqalign{& \,{\log _{9x}}27 - {\log _{3x}}243 = 0 \cr} \)      

Lời giải chi tiết:

Điều kiện: \(x > 0\); \(x \ne {1 \over 9},\,x \ne {1 \over 3}\)
Ta có: \({\log _{9x}}27 - {\log _{3x}}3 + {\log _9}243 = 0 \)

\(\Leftrightarrow {1 \over {{{\log }_{27}}9x}} - {1 \over {{{\log }_3}3x}} + {\log _{{3^2}}}{3^5} = 0\)

\(\eqalign{
& \Leftrightarrow {1 \over {{{\log }_{{3^3}}}9x}} - {1 \over {1 + {{\log }_3}x}} + \frac{1}{2}{\log _3}{3^5} = 0 \cr 
& \Leftrightarrow {3 \over {{{\log }_3}9x}} - {1 \over {1 + {{\log }_3}x}} + {5 \over 2} = 0 \cr 
& \Leftrightarrow {3 \over {2 + {{\log }_3}x}} - {1 \over {1 + {{\log }_3}x}} + {5 \over 2} = 0 \cr} \)

Đặt \({\log _3}x = t\)
Ta có phương trình: \({3 \over {t + 2}} - {1 \over {t + 1}} + {5 \over 2} = 0\)

\(\eqalign{
& \Rightarrow 6\left( {t + 1} \right) - 2\left( {t + 2} \right) + 5\left( {t + 2} \right)\left( {t + 1} \right) = 0 \cr 
&  \Leftrightarrow 6t + 6 - 2t - 4 + 5\left( {{t^2} + 3t + 2} \right) = 0 \cr&\Leftrightarrow 5{t^2} + 19t + 12 = 0\cr&\Leftrightarrow \left[ \matrix{
t = - 0,8 \hfill \cr 
t = - 3 \hfill \cr} \right.(TM) \cr&\Rightarrow \left[ \matrix{
{\log _3}x = - 0,8 \hfill \cr 
{\log _3}x = - 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {3^{ - 0,8}} \hfill \cr 
x = {3^{ - 3}} \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {{3^{ - 3}};{3^{ - 0,8}}} \right\}\)

HocTot.XYZ

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close