Đề bài

Cho tam giác ABC cân tại A. Phát biểu nào trong các phát biểu sau là sai:

  • A.

    \(\widehat B = \widehat C\)

  • B.

    \(\widehat C = \frac{{{{180}^0} - \widehat A}}{2}\)

  • C.

    \(\widehat A = {180^0} - 2\widehat C\)

  • D.

    \(\widehat B \ne \widehat C\)

Phương pháp giải

Sử dụng tính chất tổng ba góc của một tam giác bằng 180 độ và sử dụng tính chất tam giác cân có 2 góc ở đáy bằng nhau.

Lời giải của GV HocTot.XYZ

Do tam giác ABC cân nên \(\widehat B = \widehat C\)

Xét tam giác ABC ta có: \(\widehat A + \widehat B + \widehat C = {180^0} \Leftrightarrow \widehat B + \widehat C = {180^0} - \widehat A \Leftrightarrow \widehat C = \frac{{{{180}^0} - \widehat A}}{2}\) hay \(\widehat A = {180^0} - 2\widehat C\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai.

Xem lời giải >>
Bài 2 :

Hai góc nhọn của tam giác vuông cân  bằng nhau và bằng

Xem lời giải >>
Bài 3 :

Cho tam giác $ABC$  cân tại $A.$  Phát biểu nào trong các phát biểu sau là sai:

Xem lời giải >>
Bài 4 :

Một tam giác cân có góc ở đỉnh bằng \({64^0}\) thì số đo góc ở đáy là:

Xem lời giải >>
Bài 5 :

Một tam giác cân có góc ở đáy bằng \({70^0}\) thì số đo góc ở đỉnh là:

Xem lời giải >>
Bài 6 :

Số tam giác cân trong hình vẽ dưới đây là:

Xem lời giải >>
Bài 7 :

Tính số đo \(x\) trên hình vẽ sau:

Xem lời giải >>
Bài 8 :

Cho tam giác $ABC$  cân tại đỉnh $A$ với \(\widehat A = {80^0}\). Trên hai cạnh $AB,AC$ lần lượt lấy hai điểm $D$  và $E$  sao cho $AD = AE.$ Phát biểu nào sau đây là sai?

Xem lời giải >>
Bài 9 :

Cho tam giác \(ABC\) có \(\widehat A = 90^\circ ;\,AB = AC\). Khi đó

Xem lời giải >>
Bài 10 :

Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM = \dfrac{{BC}}{2}\). Số đo góc \(BAC\) là

Xem lời giải >>
Bài 11 :

Tam giác \(ABC\) có \(\widehat A = 40^\circ ;\,\widehat B - \widehat C = 20^\circ .\) Trên tia đối của tia \(AC\) lấy điểm \(E\) sao cho \(AE = AB.\) Tính số đo góc \(CBE.\)

Xem lời giải >>
Bài 12 :

Cho tam giác \(ABC\) có \(\widehat A = 120^\circ .\) Trên tia phân giác của góc \(A\) lấy điểm \(D\) sao cho \(AD = AB + AC.\) Khi đó tam giác \(BCD\) là tam giác gì?

Xem lời giải >>
Bài 13 :

Cho tam giác $ABC$  có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều $AMB$  và $ANC.$

Xem lời giải >>
Bài 14 :

Để hai tam giác cân bằng nhau thì phải cần điều kiện là:

Xem lời giải >>
Bài 15 :

Một tam giác cân có góc ở đỉnh bằng \({54^0}\) thì số đo góc ở đáy là:

Xem lời giải >>
Bài 16 :

Phát biểu nào sau đây là đúng:

Xem lời giải >>
Bài 17 :

Cho tam giác ABC cân tại B. Kẻ đường trung trực của BA cắt AB tại H, trung trực của BC cắt BC tại K và trung trực của AC cắt AC tại L. 3 đường trung trực này cắt nhau tại I.

Xem lời giải >>
Bài 18 :

Cho tam giác ABC cân tại đỉnh A với \(\widehat A = {80^0}\). Trên hai cạnh AB, AC lần lượt lấy hai điểm D và E sao cho AD = AE. Phát biểu nào sau đây là sai?

Xem lời giải >>
Bài 19 :

Cho tam giác ABC có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều AMB và ANC.

Khẳng định đúng là:

Xem lời giải >>
Bài 20 :

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chọn khẳng định đúng nhất

Xem lời giải >>