Đề bài

Cho tam giác $ABC$  cân tại $A.$  Phát biểu nào trong các phát biểu sau là sai:

  • A.

    \(\widehat B = \widehat C\)

  • B.

     \(\widehat C = \dfrac{{{{180}^0} - \widehat A}}{2}\)

  • C.

    \(\widehat A = {180^0} - 2\widehat C\)      

  • D.

    \(\widehat B \ne \widehat C\)

Phương pháp giải

+ Áp dụng tính chất của tam giác cân và tính chất tổng các góc của một tam giác

Lời giải của GV HocTot.XYZ

Do tam giác ABC cân nên \(\widehat B = \widehat C\)

Xét tam giác ABC ta có: \(\widehat A + \widehat B + \widehat C = {180^0} \Leftrightarrow \widehat B + \widehat C = {180^0} - \widehat A \Leftrightarrow \widehat C = \dfrac{{{{180}^0} - \widehat A}}{2}\) hay \(\widehat A = {180^0} - 2\widehat C\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai.

Xem lời giải >>
Bài 2 :

Hai góc nhọn của tam giác vuông cân  bằng nhau và bằng

Xem lời giải >>
Bài 3 :

Một tam giác cân có góc ở đỉnh bằng \({64^0}\) thì số đo góc ở đáy là:

Xem lời giải >>
Bài 4 :

Một tam giác cân có góc ở đáy bằng \({70^0}\) thì số đo góc ở đỉnh là:

Xem lời giải >>
Bài 5 :

Số tam giác cân trong hình vẽ dưới đây là:

Xem lời giải >>
Bài 6 :

Tính số đo \(x\) trên hình vẽ sau:

Xem lời giải >>
Bài 7 :

Cho tam giác $ABC$  cân tại đỉnh $A$ với \(\widehat A = {80^0}\). Trên hai cạnh $AB,AC$ lần lượt lấy hai điểm $D$  và $E$  sao cho $AD = AE.$ Phát biểu nào sau đây là sai?

Xem lời giải >>
Bài 8 :

Cho tam giác \(ABC\) có \(\widehat A = 90^\circ ;\,AB = AC\). Khi đó

Xem lời giải >>
Bài 9 :

Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM = \dfrac{{BC}}{2}\). Số đo góc \(BAC\) là

Xem lời giải >>
Bài 10 :

Tam giác \(ABC\) có \(\widehat A = 40^\circ ;\,\widehat B - \widehat C = 20^\circ .\) Trên tia đối của tia \(AC\) lấy điểm \(E\) sao cho \(AE = AB.\) Tính số đo góc \(CBE.\)

Xem lời giải >>
Bài 11 :

Cho tam giác \(ABC\) có \(\widehat A = 120^\circ .\) Trên tia phân giác của góc \(A\) lấy điểm \(D\) sao cho \(AD = AB + AC.\) Khi đó tam giác \(BCD\) là tam giác gì?

Xem lời giải >>
Bài 12 :

Cho tam giác $ABC$  có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều $AMB$  và $ANC.$

Xem lời giải >>
Bài 13 :

Cho \(M\) thuộc đoạn thẳng \(AB.\) Trên cùng một nửa mặt phẳng bờ \(AB,\) vẽ các tam giác đều \(AMC,BMD.\) Gọi \(E;F\) theo thứ tự là trung điểm của \(AD;BC.\) Tam giác \(MEF\) là tam giác gì? Chọn câu trả lời đúng nhất.

Xem lời giải >>
Bài 14 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(\widehat B = {30^0}.\) Khi đó:

Xem lời giải >>
Bài 15 :

Cho tam giác \(ABC\) cân tại \(A\) có \(\widehat A = {120^0},BC = 6cm.\) Đường vuông góc với \(AB\) tại \(A\) cắt \(BC\) ở \(D.\) Độ dài \(BD\) bằng:

Xem lời giải >>
Bài 16 :

Cho tam giác \(ABC\) cân tại \(A\) có: \(\widehat A = {100^0}, BC = a, AC = b.\) Về phía ngoài tam giác \(ABC\) vẽ tam giác \(ABD\) cân tại \(D\) có: \(\widehat {ADB} = {140^0}.\) Tính chu vi tam giác \(ABD\) theo \(a\) và \(b.\)

Xem lời giải >>
Bài 17 :

Cho tam giác \(ABC\) cân tại \(B,\,\widehat {BAC} = {80^0}.\) Lấy \(I\) là điểm nằm trong tam giác sao cho \(\widehat {IAC} = {10^0};\widehat {ICA} = {30^0}.\) Tính góc \(ABI.\)

Xem lời giải >>