Nội dung từ Loigiaihay.Com
Tìm \(a\) để \(\frac{{a{x^4}{y^4}}}{{ - 4x{y^2}}} = \frac{{{x^3}{y^3}}}{{4y}}\):
Dựa vào định nghĩa hai phân thức bằng nhau: Hai phân thức \(\frac{A}{B}\) và \(\frac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).
Ta có: \(a{x^4}{y^4}.4y = 4a{x^4}{y^5}\) và \( - 4x{y^2}.{x^3}{y^3} = - 4{x^4}{y^5}\)
Để \(\frac{{a{x^4}{y^4}}}{{ - 4x{y^2}}} = \frac{{{x^3}{y^3}}}{{4y}}\)thì \(4a{x^4}{y^5} = - 4{x^4}{y^5}\).
Do đó \(4a = - 4\) nên \(a = - 1\)
Đáp án : D
Các bài tập cùng chuyên đề