Nội dung từ Loigiaihay.Com
Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
A.
\(\begin{array}{l}\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} - 2x + 1 - {x^2} - 2x - 1}}{{{x^2} - 1}} = \frac{{ - 4x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
B.
\(\begin{array}{l}\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}} = \frac{{\left( {2x - 1} \right)\left( {x - 1} \right) - \left( {2x + 1} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} - x - 2x + 1} \right) - \left( {2{x^2} + x + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} - 3x + 1} \right) - \left( {2{x^2} + 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} - 3x + 1 - 2{x^2} - 3x - 1}}{{{x^2} - 1}} = \frac{{ - 6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
C.
\(\begin{array}{l}\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1}}{{{x^2} - 1}} = \frac{{4x}}{{{x^2} - 1}}\end{array}\)
D.
\(\begin{array}{l}\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}} = \frac{{\left( {2x + 1} \right)\left( {x + 1} \right) - \left( {2x - 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} + x + 2x + 1} \right) - \left( {2{x^2} - x - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} + 3x + 1} \right) - \left( {2{x^2} - 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} + 3x + 1 - 2{x^2} + 3x - 1}}{{{x^2} - 1}} = \frac{{6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
Vậy phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
Đáp án : C
Các bài tập cùng chuyên đề