Nội dung từ Loigiaihay.Com
Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm và tam giác A’B’C’ vuông tại A’ có A’B’= 3cm; A’C’ = 4cm. Tam giác ABC đồng dạng với tam giác A’B’C’ không và nếu có thì tỉ số chu vi của hai tam giác là bao nhiêu?
Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:
\(A{B^2} + A{C^2} = B{C^2} \Rightarrow B{C^2} = {6^2} + {8^2} = 100 \Rightarrow BC = 10(cm)\)
Áp dụng định lý Pythagore vào tam giác A’B’C’ vuông tại A’ ta có:
\(A'B{'^2} + A'C{'^2} = B'C{'^2} \Rightarrow B'C{'^2} = {3^2} + {4^2} = 25 \Rightarrow B'C' = 5(cm)\)
Ta thấy: \(\frac{{AB}}{{A'B'}} = \frac{6}{3} = 2;\frac{{AC}}{{A'C'}} = \frac{8}{4} = 2;\frac{{BC}}{{B'C'}} = \frac{{10}}{5} = 2\)
\( \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{{AB + AC + BC}}{{A'B' + A'C' + B'C'}} = \frac{{C{V_{\Delta ABC}}}}{{C{V_{\Delta A'B'C'}}}} = 2\)
Vì \(\Delta ABC \backsim \Delta A'B'C'\) tỉ số chu vi của hai tam giác là 2.
Đáp án : A
Các bài tập cùng chuyên đề