Đề bài

Cho tam giác ABC có \(AB = 3cm,BC = 4cm,AC = 5cm.\) Tam giác A’B’C’ là hình đồng dạng phối cảnh của tam giác ABC, O là tâm đồng dạng phối cảnh, tỉ số vị tự là 2. Tam giác A”B”C” là hình đồng dạng của tam giác A’B’C’, O là tâm đồng dạng phối cảnh, tỉ số vị tự là x \(\left( {x > 0} \right)\). Diện tích tam giác A”B”C” bằng \(96c{m^2}\).

Chọn đáp án đúng

  • A.
    \(x = 4\)
  • B.
    \(x = 8\)
  • C.
    \(x = \sqrt 2 \)
  • D.
    \(x = 2\)
Phương pháp giải
Sử dụng kiến thức về hình đồng dạng phối cảnh (hình vị tự):

+ Nếu với mỗi điểm M thuộc hình \(\mathcal{K}\), lấy điểm M’ thuộc tia OM sao cho \(OM' = k.OM\) (hay \(\frac{{OM'}}{{OM}} = k\)) thì các điểm M’ đó tạo thành hình \(\mathcal{K}'\). Ta nói hình \(\mathcal{K}'\) đồng dạng phối cảnh với hình \(\mathcal{K}\) theo tỉ số đồng dạng (vị tự) k. Khi đó, điểm O là tâm phối cảnh.

+ Nếu \(k > 1\) thì ta nói \(\mathcal{K}'\) là hình phóng to của hình \(\mathcal{K}\), nếu \(k < 1\) thì ta nói \(\mathcal{K}'\) là hình thu nhỏ của hình \(\mathcal{K}\)

Lời giải của GV HocTot.XYZ

Vì tam giác A’B’C’ là hình đồng dạng phối cảnh của tam giác ABC, O là tâm đồng dạng phối cảnh, tỉ số vị tự là 2 nên \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}=2\)

\(\Rightarrow A'B'=6cm,B'C'=8cm,A'C'=10cm\)

Vì \(A'C{{'}^{2}}=A'B{{'}^{2}}+B'C{{'}^{2}}\left( {{10}^{2}}={{8}^{2}}+{{6}^{2}} \right)\) nên tam giác A’B’C’ vuông tại B’

Vì tam giác A”B”C” là hình đồng dạng của tam giác A’B’C’, O là tâm đồng dạng phối cảnh, tỉ số vị tự là x nên \(\Delta A''B''C''\backsim \Delta A'B'C'\)

Do đó, \(\widehat{A''B''C''}=\widehat{A'B'C'}=90\) và \(\frac{A''B''}{A'B'}=\frac{A''C''}{A'C'}=\frac{B''C''}{B'C'}=x\Rightarrow A''B''=6x,A''C''=10x,B''C''=8x\)

Vì tam giác A”B”C” vuông tại B” nên diện tích tam giác A”B”C” là:

\({{S}_{A''B''C''}}=\frac{1}{2}B''A''.B''C''\Rightarrow \frac{1}{2}.6x.8x=96\Rightarrow {{x}^{2}}=4\Rightarrow x=2\) (do \(x>0\))

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Cho hai tam giác ABC và A’B’C’ sao cho 3 đường thẳng AA’, BB’, CC’ cùng đi qua điểm O và \(\frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}} = \frac{{OC'}}{{OC}} = 3.\) Khi đó, tam giác ABC và tam giác A’B’C’ là đồng dạng phối cảnh với tỉ số vị tự là:

Xem lời giải >>
Bài 2 :

Nếu với mỗi điểm M thuộc hình \(\mathcal{K}\), lấy điểm M’ thuộc tia OM sao cho \(OM' = k.OM\) thì các điểm M’ đó tạo thành hình \(\mathcal{K}'\). Ta nói hình \(\mathcal{K}'\) đồng dạng phối cảnh với hình \(\mathcal{K}\) với tâm phối cảnh là:

Xem lời giải >>
Bài 3 :

Chọn đáp án đúng nhất

Xem lời giải >>
Bài 4 :

Cho hình chữ nhật ba hình chữ nhật ABCD, A’B’C’D’, A”B”C”D” sao cho:

+ Hai hình chữ nhật A”B”C”D” và ABCD là hai hình đồng dạng phối cảnh

+ Hình A”B”C”D” bằng hình A’B’C’D’

Chọn đáp án đúng

Xem lời giải >>
Bài 5 :

Trong những cặp hình cho ở hình vẽ dưới đây, có mấy cặp hình là hình đồng dạng?

Xem lời giải >>
Bài 6 :

Cho tam giác OAB. Gọi C, D lần lượt là trung điểm của OA và OB.

Chọn đáp án đúng.

Xem lời giải >>
Bài 7 :

Cho các hình vẽ sau:

Hình nào đồng dạng với hình a?

Xem lời giải >>
Bài 8 :

Cho đường tròn (O; 6cm) và đường tròn (O; 3cm). Khi đó, đường tròn (O; 6cm) đồng dạng với đường tròn (O; 3cm) theo tỉ số đồng dạng:

Xem lời giải >>
Bài 9 :

Hình vuông A’B’C’D’ là hình vuông ABCD sau khi phóng to với \(k = 3.\) Nếu độ dài cạnh của hình vuông ABCD là 9cm thì độ dài cạnh của hình vuông A’B’C’D’ là:

Xem lời giải >>
Bài 10 :

Trong hình vẽ bên dưới, các điểm A’, B’, C’, D’ lần lượt là trung điểm của các đoạn thẳng OA, OB, OC, OD.

Cho các khẳng định sau:

+ Hình thang ABCD và EFGH bằng nhau

+ Hình thang A’B’C’D và hình thang EFGH đồng dạng với nhau

+ Hình thang ABCD đồng dạng phối cảnh với hình thang A’B’C’D’

Có bao nhiêu khẳng định đúng?

Xem lời giải >>
Bài 11 :

Cho tam giác ABC có AB = 4, BC = 7, CA = 6. Cho O, I là điểm phân biệt.

+ Giả sử tam giác A’B’C’ là hình đồng dạng phối cảnh của tam giác ABC với O là tâm đồng dạng phối cảnh, tỉ số \(\frac{A'B'}{AB}=3\)

+ Giả sử tam giác A’’B’’C’’ là hình đồng dạng phối cảnh của tam giác ABC với điểm I là tâm đồng dạng phối cảnh, tỉ số \(\frac{A'B'}{AB}=3\).

Chọn đáp án đúng

Xem lời giải >>
Bài 12 :

Cho tam giác ABC vuông tại A, gọi M là trung điểm của BC. Qua M vẽ đường thẳng vuông góc với AB cắt AB tại H.

Chọn đáp án đúng

Xem lời giải >>
Bài 13 :

Cho hai hình vuông EFGH, E’F’G’H’ lần lượt có độ dài cạnh là 10cm và 8cm.

Chọn câu trả lời đúng nhất

Xem lời giải >>
Bài 14 :

Tam giác ABC có chu vi bằng 18cm. Tam giác A’B’C’ là hình đồng dạng phối cảnh của tam giác ABC với O là tâm đồng dạng phối cảnh, tỉ số \(\frac{{A'B'}}{{AB}} = \frac{1}{3}\). Chu vi tam giác A’B’C’ bằng:

Xem lời giải >>
Bài 15 :

Hình vuông A’B’C’D’ là hình đồng dạng với vuông ABCD theo tỉ số đồng dạng k. Biết rằng diện tích hình vuông A’B’C’D’ bằng \(64c{m^2}\), diện tích hình vuông ABCD là \(36c{m^2}.\) Khi đó, tỉ số đồng dạng k bằng:

Xem lời giải >>
Bài 16 :

Cho hình tròn H có diện tích bằng \(113,04c{m^2}\). Hình tròn H’ là hình đồng dạng với hình H có tỉ số đồng dạng bằng \(\frac{1}{2}\). Khi đó, diện tích của hình tròn H’ bằng:

Xem lời giải >>
Bài 17 :

Cho tam giác ABC vuông tại A, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho đoạn thẳng MN là hình đồng dạng phối cảnh của đoạn thẳng BC tâm A, tỉ số đồng dạng \(\frac{1}{4}\). Biết rằng diện tích tam giác ABC bằng \(48c{m^2}.\) Diện tích tam giác AMN bằng:

Xem lời giải >>
Bài 18 :

Cho tam giác ABC. Trên cạnh BC lấy điểm K sao cho \(CK = \frac{2}{3}BC.\) Tìm trên AB điểm H sao cho cạnh HK là hình đồng dạng phối cảnh của cạnh AC (với tâm đồng dạng phối cảnh là điểm B)

Xem lời giải >>
Bài 19 :

: Cho hình chữ nhật A’B’C’D’ là hình đồng dạng của hình chữ nhật ABCD với tỉ số đồng dạng k. Biết rằng \(AB = 6cm,BC = 8cm,A'B' = 12cm.\) Khi đó, diện tích hình chữ nhật A’B’C’D’ là:

Xem lời giải >>
Bài 20 :

Cho hình chữ nhật ABCD có \(AB = \frac{3}{4}BC.\) Hình chữ nhật A’B’C’D’ là hình đồng dạng của hình chữ nhật ABCD theo tỉ số đồng dạng 2. Biết rằng \(A'C' = 10cm.\) Khi đó, diện tích hình chữ nhật A’B’C’D’ bằng:   

Xem lời giải >>