Nội dung từ Loigiaihay.Com
Cho tam giác ABC có \(AB = 2,BC = 3,CA = 4\) , AD là đường phân giác và I là giao điểm của ba đường phân giác của tam giác đó. Tính tỉ số \(\frac{{ID}}{{IA}}\)

Trong tam giác ABC có AD là đường phân giác của góc BAC nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{2}{4} = \frac{1}{2}\) nên \(\frac{{DB}}{1} = \frac{{DC}}{2}\)
Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{DB}}{1} = \frac{{DC}}{2} = \frac{{DB + DC}}{{1 + 2}} = \frac{{BC}}{3} = \frac{3}{3} = 1\)
Do đó, \(DB = 1\)
Xét tam giác ABD có BI là đường phân giác của góc ABD nên \(\frac{{ID}}{{IA}} = \frac{{BD}}{{BA}} = \frac{1}{2}\)
Đáp án : C

Các bài tập cùng chuyên đề