Nội dung từ Loigiaihay.Com
Cho tam giác ABC và một điểm S không thuộc mặt phẳng ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Khi đó, giao tuyến của hai mặt phẳng (SBN) và (SCM) là:
Sử dụng kiến thức về giao tuyến của hai mặt phẳng: Đường thẳng chung d (nếu có) của hai mặt phẳng phân biệt (P) và (Q) được gọi là giao tuyến của hai mặt phẳng đó.
Xét mặt phẳng (ABC), gọi G là giao điểm của BN và CM.
Vì \(G \in BN \Rightarrow G \in \left( {SBN} \right);G \in CM \Rightarrow G \in \left( {SCM} \right)\) nên G là điểm chung của hai mặt phẳng (SBN) và (SCM)
Ta có: \(S \in SB \Rightarrow S \in \left( {SBN} \right),S \in SC \Rightarrow S \in \left( {SCM} \right)\) nên S là điểm chung của hai mặt phẳng (SBN) và (SCM)
Do đó, SG là giao tuyến của hai mặt phẳng (SBN) và (SCM).
Đáp án : A
Các bài tập cùng chuyên đề