Nội dung từ Loigiaihay.Com
Một con lắc lò xo nằm ngang có tần số góc dao động riêng \(\omega {\rm{ \;}} = 10{\mkern 1mu} {\mkern 1mu} rad/s\). Tác dụng vào vật nặng theo phương của trục lò xo, một ngoại lực biến thiên \({F_n} = {F_0}cos\left( {20t} \right){\mkern 1mu} {\mkern 1mu} N\). Sau một thời gian vật dao động điều hòa trên đoạn thẳng MN = 10 cm. Khi vật cách M một đoạn 2 cm thì tốc độ của nó là
Con lắc dao động cưỡng bức có tần số góc bằng tần số góc của ngoại lực cưỡng bức
Công thức độc lập với thơi gian: \({x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {A^2}\)
Tần số góc của con lắc là: \(\omega {\rm{ \;}} = 20{\mkern 1mu} {\mkern 1mu} \left( {rad/s} \right)\)
Biên độ dao động của con lắc là:
\(A = \frac{l}{2} = 5{\mkern 1mu} {\mkern 1mu} \left( {cm} \right)\)
Áp dụng công thức độc lập với thời gian, ta có:
\(\begin{array}{*{20}{l}}{{x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {A^2} \Rightarrow \left| v \right| = \omega \sqrt {{A^2} - {x^2}} }\\{ \Rightarrow \left| v \right| = 20.\sqrt {{5^2} - {3^2}} {\rm{ \;}} = 80{\mkern 1mu} {\mkern 1mu} \left( {cm/s} \right)}\end{array}\)
Đáp án C.
Đáp án : C
Các bài tập cùng chuyên đề