Nội dung từ Loigiaihay.Com
Xét góc lượng giác \(\left( {OA,OM} \right) = \alpha \), trong đó M là điểm không nằm trên các trục tọa độ Ox và Oy. Khi đó, M thuộc góc phần tư nào để \(\sin \alpha \) và \(\cos \alpha \) trái dấu?
Sử dụng kiến thức về dấu của các giá trị lượng giác.
Với \(\alpha \in \) góc phần tư thứ I thì: \(\sin \alpha > 0,\cos \alpha > 0\)
Với \(\alpha \in \) góc phần tư thứ II thì: \(\sin \alpha > 0,\cos \alpha < 0\)
Với \(\alpha \in \) góc phần tư thứ III thì: \(\sin \alpha < 0,\cos \alpha < 0\)
Với \(\alpha \in \) góc phần tư thứ IV thì: \(\sin \alpha < 0,\cos \alpha > 0\)
Ta có: Với \(\alpha \in \) góc phần tư thứ I thì: \(\sin \alpha > 0,\cos \alpha > 0\)
Với \(\alpha \in \) góc phần tư thứ II thì: \(\sin \alpha > 0,\cos \alpha < 0\)
Với \(\alpha \in \) góc phần tư thứ III thì: \(\sin \alpha < 0,\cos \alpha < 0\)
Với \(\alpha \in \) góc phần tư thứ IV thì: \(\sin \alpha < 0,\cos \alpha > 0\)
Do đó, M thuộc góc phần tư thứ (II) và (IV) thì \(\sin \alpha \) và \(\cos \alpha \) trái dấu.
Đáp án : C
Các bài tập cùng chuyên đề