Nội dung từ Loigiaihay.Com
Theo ước tính, kể từ lúc mới mua, cứ sau mỗi 200 lần sạc thì pin của điện thoại X sẽ giảm 4% so với chu kỳ 200 lần sạc trước đó. Hỏi sau 1 200 lần sạc thì pin của điện thoại X còn lại bao nhiêu phần trăm so với lúc mới mua? (làm tròn đến chữ số thập phân thứ hai)
Sử dụng kiến thức về công thức số hạng tổng quát của cấp số nhân: Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định theo công thức: \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\).
200 lần sạc tạo thành 1 chu kì, 1200 lần sạc tạo thành 6 chu kì.
Pin điện thoại ban đầu là 100%, sau 1 chu kì còn 96% = 0,96.
Sau chu kì thứ 2, pin chỉ còn 96% so với sau chu kì 1, tức 0,96.0,96 = 0,9216.
…
Như vậy, pin điện thoại sau mỗi chu kì sạc sẽ tạo thành một cấp số nhân có công bội \(q = 0,96\) và số hạng đầu \({u_1} = 100\% \).
Mức pin điện thoại ban đầu là \({u_1} = 100\% \).
Mức pin điện thoại sau 1 chu kì là \({u_2}\).
Mức pin điện thoại sau 2 chu kì là \({u_3}\).
…
Mức pin điện thoại sau 6 chu kì là \({u_7}\).
Dung lượng pin của điện thoại còn lại sau 1200 lần sạc so với lúc mới mua là: \({u_7} = {u_1}.{q^6} = 100\% .{\left( {0,96} \right)^6} \approx 78,28\% \).
Đáp án : A
Các bài tập cùng chuyên đề