Đề bài

Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là

  • A.
    \(\frac{1}{4}.\)
  • B.
    \(\frac{1}{3}.\)
  • C.
    \(\frac{1}{2}.\)
  • D.
    \(1.\)  
Phương pháp giải

Dựa vào kiến thức về xác suất của các biến cố đồng khả năng.

Lời giải của GV HocTot.XYZ

Do đồng xu cân đối nên biến cố “Đồng xu xuất hiện mặt ngửa” và “Đồng xu xuất hiện mặt sấp” là đồng khả năng nên xác suất của 2 biến cố này bằng nhau và bằng \(\frac{1}{2}\).

Đáp án C.

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Trong các phát biểu sau, phát biểu nào đúng?

Xem lời giải >>
Bài 2 :

Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)

Xem lời giải >>
Bài 3 :

Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?

Xem lời giải >>
Bài 4 :

Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)

Xem lời giải >>
Bài 5 :

Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là

Xem lời giải >>
Bài 6 :

Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x =  - 1\) bằng

Xem lời giải >>
Bài 7 :

Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?

Xem lời giải >>
Bài 8 :

Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.

Xem lời giải >>
Bài 9 :

Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?

Xem lời giải >>
Bài 10 :

Bộ ba số nào là độ dài ba cạnh của một tam giác?

Xem lời giải >>
Bài 11 :

Số mặt của hình hộp chữ nhật là

Xem lời giải >>
Bài 12 :

a) Tính giá trị của biểu thức \(A = (2x + y)(2x - y)\) tại \(x = - 2,\;y = \frac{1}{3}.\)

b) Tìm tất cả các giá trị của \(x\) thoả mãn \(x(3x - 2) - 3{x^2} = \frac{3}{4}.\)

Xem lời giải >>
Bài 13 :

Học sinh của ba lớp 7A, 7B, 7C làm 40 tấm thiệp để chúc mừng các thầy cô nhân ngày 20-11, biết số học sinh của ba lớp 7A, 7B, 7C theo thứ tự là 45; 42; 33. Hỏi trong ba lớp trên mỗi lớp làm bao nhiêu tấm thiệp, biết số học sinh tỉ lệ với số thiệp cần làm.

Xem lời giải >>
Bài 14 :

Cho hai đa thức \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\) và \(B\left( x \right) =  - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)

a) Thu gọn hai đa thức \(A\left( x \right)\) và \(B\left( x \right)\) và sắp xếp theo lũy thừa giảm dần của biến.

b) Tính \(A\left( x \right) - B\left( x \right)\).

Xem lời giải >>
Bài 15 :

Cho tam giác ABC cân tại A. Kẻ \(BH \bot AC;CK \bot AB\) (\(H \in AC;\,\)\(K \in AB\)).

a) Chứng minh tam giác AKH là tam giác cân

b) Gọi I là giao của BHCK; AI cắt BC tại M. Chứng minh rằng IM là phân giác của \(\widehat {BIC}\).

c) Chứng minh: \(HK\,{\rm{//}}\,BC\).

Xem lời giải >>
Bài 16 :

Tìm tất cả các số nguyên dương \(x,y,z\) thỏa mãn:

\(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\)và \(200 < {y^2} + {z^2} < 450\).

Xem lời giải >>