Nội dung từ Loigiaihay.Com
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \(AB = a\sqrt 3 \), AC = AA’ = a. Giá trị sin của góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng
Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu vuông góc của đường thẳng trên mặt phẳng.
Xét \(\Delta ABC\) vuông tại \(A:\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} \Leftrightarrow AH = \frac{{\sqrt 3 }}{2}a\).
Xét \(\Delta AA'C'\) vuông tại C’: \(AC' = {\rm{ }}\sqrt {AA{'^2} + AC{'^2}} {\rm{ \;}} = a\sqrt 2 \).
Xét \(\Delta AHC'\) vuông tại C’: \(\sin \widehat {AC'H} = \frac{{AH}}{{A{C^\prime }}} = \frac{{\sqrt 6 }}{4}\).
Đáp án D.
Đáp án : D
Các bài tập cùng chuyên đề