Nội dung từ Loigiaihay.Com
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(y = - {x^3} + 3x + 1\);
b) \(y = {x^3} + 3{x^2} - x - 1\).
Sử dụng kiến thức về sơ đồ khảo sát hàm số bậc ba để khảo sát và vẽ đồ thị hàm số:
Sơ đồ khảo sát hàm số bậc ba
1. Tìm tập xác định của hàm số.
2. Khảo sát sự biến thiên của hàm số:
+ Tính đạo hàm y’. Tìm các điểm tại đó y’ bằng 0 hoặc đạo hàm không tồn tại.
+ Xét dấu y’ để chỉ ra các khoảng đơn điệu của hàm số.
+ Tìm cực trị của hàm số.
+ Tìm các giới hạn tại vô cực, giới hạn vô cực.
+ Lập bảng biến thiên của hàm số.
3. Vẽ đồ thị của hàm số dựa vào bảng biến thiên.
a) Tập xác định: \(D = \mathbb{R}\)
2. Sự biến thiên:
Ta có: \(y' = - 3{x^2} + 3,y' = 0 \Leftrightarrow x = \pm 1\)
Trên khoảng \(\left( { - 1;1} \right)\), \(y' > 0\) nên hàm số đồng biến. Trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\), \(y' < 0\) nên hàm số nghịch biến trên mỗi khoảng đó.
Hàm số đạt cực đại tại \(x = 1\), giá trị cực đại \({y_{CĐ}}=3\) . Hàm số đạt cực tiểu tại \(x = - 1\), giá trị cực tiểu \({y_{CT}} = - 1\)
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - {x^3} + 3x + 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( { - 1 + \frac{3}{{{x^2}}} + \frac{1}{{{x^3}}}} \right)} \right] = + \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 3x + 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( { - 1 + \frac{3}{{{x^2}}} + \frac{1}{{{x^3}}}} \right)} \right] = - \infty \)
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số \(y = - {x^3} + 3x + 1\) với trục tung là (0; 1).
Các điểm (1; 3); \(\left( { - 1; - 1} \right)\) thuộc đồ thị hàm số \(y = - {x^3} + 3x + 1\).
Đồ thị hàm số có tâm đối xứng là điểm (0; 1).
b) 1. Tập xác định: \(D = \mathbb{R}\)
2. Sự biến thiên:
Ta có: \(y' = 3{x^2} + 6x - 1,y' = 0 \Leftrightarrow x = \frac{{ - 3 - 2\sqrt 3 }}{3}\) hoặc \(x = \frac{{ - 3 + 2\sqrt 3 }}{3}\)
Trên khoảng \(\left( {\frac{{ - 3 - 2\sqrt 3 }}{3};\frac{{ - 3 + 2\sqrt 3 }}{3}} \right)\), \(y' < 0\) nên hàm số nghịch biến. Trên khoảng \(\left( { - \infty ;\frac{{ - 3 - 2\sqrt 3 }}{3}} \right)\) và \(\left( {\frac{{ - 3 + 2\sqrt 3 }}{3}; + \infty } \right)\), \(y' > 0\) nên hàm số đồng biến trên mỗi khoảng đó.
Hàm số đạt cực đại tại \(x = \frac{{ - 3 - 2\sqrt 3 }}{3}\), giá trị cực đại . Hàm số đạt cực tiểu tại \(x = \frac{{ - 3 + 2\sqrt 3 }}{3}\), giá trị cực tiểu \({y_{CT}} = \frac{{18 - 16\sqrt 3 }}{9}\).
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} + 3{x^2} - x - 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( {1 + \frac{3}{x} - \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}} \right)} \right] = - \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( {{x^3} + 3{x^2} - x - 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( {1 + \frac{3}{x} - \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}} \right)} \right] = + \infty \)
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số \(y = {x^3} + 3{x^2} - x - 1\) với trục tung là (0; -1).
Các điểm (-1; 2); \(\left( {1;2} \right)\) thuộc đồ thị hàm số \(y = {x^3} + 3{x^2} - x - 1\).
Đồ thị hàm số có tâm đối xứng là điểm (-1; 2).
Các bài tập cùng chuyên đề
Bài 1 :
Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = - 2{x^3} + 3{x^2} - 5x\).
Bài 2 :
Đồ thị hàm số \(y = {x^3} - 3x - 1\) là đường cong sau ?
Bài 3 :
Đường cong ở hình 29 là đồ thị của hàm số:
Bài 4 :
khảo sát về sự biến thiên và vẽ đồ thị của các hàm số sau:
a,\(y = 2{x^3} - 3x + 1\)
b,\(y = - {x^3} + 3x - 1\)
c, \( y = {\left( {x - 2} \right)^3} + 4\)
d,\(y = - {x^3} + 3{x^2} - 1\)
e, \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 1\)
g,\( y = - {x^3} - 3x\)
Bài 5 :
Hàm số nào có đồ thị như hình 32?
\(a,\;y = - {x^3} + 3x - 2\)
\(b,y = - {x^3} - 2\)
\(c,y = - {x^3} + 3{x^2} - 2\)
\(d,\;y = {x^3} - 3x - 2\)
Bài 6 :
Khảo sát và vẽ đồ thị của các hàm số sau:
a) \(y = - 2{x^3} - 3{x^2} + 1\)
b) \(y = {x^3} + 3{x^2} + 3x + 1\)
Bài 7 :
Khảo sát và vẽ đồ thị của các hàm số sau:
a) \(y = {x^3} + x - 2\)
b) \(y = 2{x^3} + {x^2} - \frac{1}{2}x - 3\)
Bài 8 :
Cho hàm số \(y = {x^3} - 3{x^2} + 2\)
a) Tìm điểm I thuộc đồ thị hàm số biết hoành độ của I là nghiệm của phương trình y’’ = 0.
b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.
Bài 9 :
Cho hàm số bậc ba y = f(x) có đồ thị như Hình 3. Viết công thức của hàm số
Bài 10 :
Cho hàm số \(y = \frac{1}{3}{x^3} - {x^2} + 4\).
a) Khảo sát và vẽ đồ thị của hàm số.
b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số.
Bài 11 :
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \((a,b,c,d \in \mathbb{R})\) có đồ thị là đường cong như hình bên. Có bao nhiêu số dương trong các số \(a,b,c,d\)?
Bài 12 :
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có bảng biến thiên như hình vẽ sau:
Xác định công thức của hàm số.
\(y = {x^3} - 3{x^2} + 1\)
\(y = - {x^3} - 2{x^2} + 1\)
\(y = - {x^3} - 3{x^2} + 1\)
\(y = - {x^3} + 3{x^2} + 1\)
Bài 13 :
Đường cong hình bên là đồ thị của hàm số \(y = a{x^3} + b{x^2} + cx + d\). Khẳng định nào sau đây đúng?
a > 0, b < 0, c > 0, d > 0
a > 0, b < 0, c < 0, d > 0
a > 0, b > 0, c < 0, d > 0
a < 0, b > 0, c > 0, d < 0
Bài 14 :
Đường cong hình bên là đồ thị của hàm số \(y = a{x^3} + b{x^2} + cx + d\). Khẳng định nào sau đây đúng?
a < 0, b < 0, c > 0, d < 0
a > 0, b > 0, c < 0, d < 0
a < 0, b < 0, c < 0, d > 0
a < 0, b > 0, c < 0, d < 0
Bài 15 :
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(y = {x^3} - 6{x^2} + 9x\);
b) \(y = {x^3} + 3{x^2} + 6x + 4\).
Bài 16 :
Đồ thị hàm số \(y = 4{x^3} - 6x + 1\) là đường cong nào trong các đường cong sau?
Bài 17 :
Đồ thị hàm số \(y = - {x^3} - x + 2\) là đường cong nào trong các đường cong sau?
Bài 18 :
Đường cong ở Hình 16 là đồ thị của hàm số:
A. \(y = - \frac{{{x^3}}}{3} + {x^2} - 4\).
B. \(y = {x^3} - 3{{\rm{x}}^2} - 4\).
C. \(y = {x^3} + 3{{\rm{x}}^2} - 4\).
D. \(y = - {x^3} - 3{{\rm{x}}^2} + 4\).
Bài 19 :
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\left( {a \ne 0} \right)\) có đồ thị là đường cong ở Hình 20.
a) \(a > 0\).
b) Đồ thị cắt trục tung tại điểm có tung độ dương.
c) Đồ thị hàm số có hai điểm cực trị nằm cùng phía với trục tung.
d) \(b < 0\).
Bài 20 :
Cho hàm số bậc ba \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị là đường cong như Hình 22. Căn cứ vào đồ thị hàm số:
a) Tìm khoảng đơn điệu, điểm cực đại, cực tiểu của hàm số.
b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn \(\left[ { - 1;2} \right]\)
c) Tìm điểm trên đồ thị hàm số có hoành độ bằng 2.
d) Tìm điểm trên đồ thị hàm số có tung độ bằng 2.
e) Đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại mấy điểm?
g) Với giá trị nào của \(x\) thì \( - 2 < f\left( x \right) < 2\)?
h) Tìm công thức xác định hàm số \(f\left( x \right)\).
Bài 21 :
Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:
a) \(y = \left( {x - 2} \right){\left( {x + 1} \right)^2}\);
b) \(y = - \frac{1}{3}{x^3} - {x^2} + 2\);
c) \(y = 2{{\rm{x}}^3} - 3{{\rm{x}}^2} + 2{\rm{x}} - 1\);
d) \(y = - \frac{1}{4}\left( {{x^3} - 6{{\rm{x}}^2} + 12{\rm{x}}} \right)\).
Bài 22 :
Đường cong ở Hình 27 là đồ thị của hàm số:
A. \(y = 2{{\rm{x}}^3} + 2\).
B. \(y = {x^3} - {x^2} + 2\).
C. \(y = - {x^3} + 3{\rm{x}} + 2\).
D. \(y = {x^3} + x + 2\).
Bài 23 :
Khảo sát và vẽ đồ thị của các hàm số sau:
a) \(y = x\left( {{x^2} - 4x} \right)\);
b) \(y = - {x^3} + 3{x^2} - 2\).
Bài 24 :
Cho hàm số \(y = \left( {m - 1} \right){x^3} + 2\left( {m + 1} \right){x^2} - x + m - 1\) (\(m\) là tham số).
a) Khảo sát và vẽ đồ thị của hàm số khi \(m = - 1\).
b) Tìm giá trị của \(m\) để tâm đối xứng của đồ thị hàm số có hoành độ \({x_0} = - 2\).
Bài 25 :
Cho hàm số \(y = 2{x^3} + 6{x^2} - x + 2\). Viết phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó.
Bài 26 :
Với giá trị nào của \(m\) thì đồ thị của hàm số \(y = - {x^3} - 3{x^2} + mx + 1\) có tâm đối xứng nằm trên trục \(Ox\)? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?
Bài 27 :
Cho hàm số \(y = {x^3} - 3{x^2} + 2\) có đồ thị (C).
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến \(\Delta \) của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng \(\Delta \) là tiếp tuyến có hệ số góc nhỏ nhất của (C).
c) Tìm các giá trị của tham số \(m\) để phương trình \({x^3} - 3{x^2} - m = 0\) có ba nghiệm phân biệt.
Bài 28 :
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau:
a) \(y = f(x) = - {x^3} + 2{x^2} + 4x - 3\)
b) \(y = f(x) = \frac{1}{3}{x^3} - {x^2} + x + 1\)
Bài 29 :
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau:
a) \(y = {x^3} + 3{x^2} - 4\)
b) \(y = {x^3} + 4{x^2} + 4x\)
c) \(y = - 2{x^3} + 2\)
d) \(y = - {x^3} - {x^2} - x + 1\)
Bài 30 :
Cho hàm số \(y = - {x^3} + 3x + 1\). Khảo sát sự biến thiên, vẽ đồ thị và chỉ ra tâm đối xứng của đồ thị hàm số đã cho.