Nội dung từ Loigiaihay.Com
Trong không gian \(Oxyz\) được thiết lập tại một sân bay, người ta ghi nhận hai máy bay đang bay đến với các vectơ vận tốc \(\overrightarrow u = \left( {90; - 80; - 120} \right),\overrightarrow v = \left( {60; - 50; - 60} \right)\).
Tính góc giữa hai vectơ vận tốc nói trên (kết quả làm tròn đến hàng phần mười của độ).

Sử dụng tích vô hướng của hai vectơ: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{90.60 + \left( { - 80} \right).\left( { - 50} \right) + \left( { - 120} \right).\left( { - 60} \right)}}{{\sqrt {{{90}^2} + {{\left( { - 80} \right)}^2} + {{\left( { - 120} \right)}^2}} .\sqrt {{{60}^2} + {{\left( { - 50} \right)}^2} + {{\left( { - 60} \right)}^2}} }} \approx 0,991\)
Vậy \(\left( {\overrightarrow u ,\overrightarrow v } \right) \approx {7,5^ \circ }\).

Các bài tập cùng chuyên đề
Bài 1 :
Cho hai véc tơ \(\overrightarrow {{u_1}} \left( {{x_1};{y_1};{z_1}} \right),\overrightarrow {{u_2}} \left( {{x_2};{y_2};{z_2}} \right)\). Hai véc tơ vuông góc với nhau thì điều gì sau đây KHÔNG xảy ra?
\(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0\)
\(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = \overrightarrow 0 \)
\({x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2} = 0\)
\(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = 0\)
Bài 2 :
Trong không gian với hệ tọa độ \(Oxyz,\) cho ba vectơ \(\vec{a}=\left( -\,1;1;0 \right),\,\,\vec{b}=\left( 1;1;0 \right),\,\,\vec{c}=\left( 1;1;1 \right).\) Trong các mệnh đề sau, mệnh đề nào sai ?
Bài 3 :
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x';y';z'} \right)\).
a) Giải thích vì sao \(\overrightarrow i .\overrightarrow i = 1\) và \(\overrightarrow i .\overrightarrow j = \overrightarrow i .\overrightarrow k = 0\).
b) Sử dụng biểu diễn \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) để tính các tích vô hướng \(\overrightarrow a .\overrightarrow i ;\overrightarrow a .\overrightarrow j \) và \(\overrightarrow a .\overrightarrow k \).
c) Sử dụng biểu diễn \(\overrightarrow b = x'\overrightarrow i + y'\overrightarrow j + z'\overrightarrow k \) để tính các tích vô hướng \(\overrightarrow a .\overrightarrow b \).
Bài 4 :
Trong không gian Oxyz, cho \(\overrightarrow a = \left( {2;1; - 3} \right),\overrightarrow b = \left( { - 2; - 1;2} \right)\). Tích vô hướng \(\overrightarrow a .\overrightarrow b \) bằng
A. \( - 2\).
B. \( - 11\).
C. 11.
D. 2.
Bài 5 :
Trong không gian Oxyz, cho \(\overrightarrow a = \left( {2;1; - 2} \right),\overrightarrow b = \left( {0; - 1;1} \right)\). Góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \) bằng
A. \({60^0}\).
B. \({135^0}\).
C. \({120^0}\).
D. \({45^0}\).
Bài 6 :
Trong không gian Oxyz, cho \(\overrightarrow a = \left( { - 2;2;2} \right),\overrightarrow b = \left( {1; - 1; - 2} \right)\). Côsin của góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \) bằng
A. \(\frac{{ - 2\sqrt 2 }}{3}\).
B. \(\frac{{2\sqrt 2 }}{3}\).
C. \(\frac{{\sqrt 2 }}{3}\).
D. \(\frac{{ - \sqrt 2 }}{3}\).
Bài 7 :
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow u = \left( {a,b,c} \right)\) và \(\overrightarrow v = \left( {a';b';c'} \right)\).
a) Vectơ \(\overrightarrow n = \left( {bc' - b'c;ca' - c'a;ab' - a'b} \right)\) có vuông góc với cả hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) hay không?
b) \(\overrightarrow n = \overrightarrow 0 \) khi và chỉ khi \(\overrightarrow u \) và \(\overrightarrow v \) có mối quan hệ gì?
Bài 8 :
a) Cho hình lập phương ABCD.A’B’C’D’ có A(0;0;0), B(1;0;0), D(0;1;0), C’(1;1;1). Hãy chỉ ra tọa độ của một vecto vuông góc với cả hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \)
b) Cho hai vecto \(\overrightarrow u = ({x_1};{y_1};{z_1})\) và \(\overrightarrow v = ({x_2};{y_2};{z_2})\) không cùng phương. Xét vecto \(\overrightarrow w = ({y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1})\).
Bài 9 :
Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = (3;2; - 1)\), \(\overrightarrow b = ( - 2;1;2)\). Tính cosin của góc \((\overrightarrow a ,\overrightarrow b )\)
Bài 10 :
Tích vô hướng của hai vecto \(\overrightarrow u = (1; - 2;3),\overrightarrow v = (3;4; - 5)\) là:
A. \(\sqrt {14} .\sqrt {50} \)
B. \( - \sqrt {14} .\sqrt {50} \)
C. 20
D. -20
Bài 11 :
Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực \(\overrightarrow f = (5;4; - 2)\) (đơn vị: N) giúp thiết bị thực hiện độ dời \(\overrightarrow a = (70;20; - 40)\) (đơn vị: m). Tính công sinh bởi lực \(\overrightarrow f \)

Bài 12 :
Cho ba vectơ \(\overrightarrow m = ( - 5;4;9)\), \(\overrightarrow n = (2; - 7;0)\), \(\overrightarrow p = (6;3; - 4)\).
a) Tính \(\overrightarrow m .\overrightarrow n \), \(\overrightarrow m .\overrightarrow p \)
b) Tính \(|\overrightarrow m |\), \(|\overrightarrow n |\), \(\cos (\overrightarrow m ,\overrightarrow n )\)
c) Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \) không?
Bài 13 :
Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\).
a) Biểu diễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)
b) Tính các tích vô hướng \({\overrightarrow i ^2},{\overrightarrow j ^2},{\overrightarrow k ^2}\), \(\overrightarrow i .\overrightarrow j \), \(\overrightarrow j .\overrightarrow k \), \(\overrightarrow k .\overrightarrow i \)
c) Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) theo toạ độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).
Bài 14 :
Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\), ta có biểu thức tọa độ của tích vô hướng \(\overrightarrow a .\overrightarrow b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
Bài 15 :
Gọi a là góc giữa hai vectơ \(\overrightarrow u = (0; - 1;0)\) và \(\overrightarrow v = (\sqrt 3 ;1;0)\). Giá trị của \(\alpha \) là
A. \(\alpha = \frac{\pi }{6}\).
B. \(\alpha = \frac{\pi }{3}\).
C. \(\alpha = \frac{{2\pi }}{3}\).
D. \(\alpha = \frac{\pi }{2}\).
Bài 16 :
Cho hai vecto \(\overrightarrow u = (2; - 1;3)\), \(\overrightarrow v = ( - 3;4;1)\). Tích \(\overrightarrow u .\overrightarrow v \) bằng:
11
-7
5
-2
Bài 17 :
Cho hai vecto \(\overrightarrow u = (1;4;2)\), \(\overrightarrow v = ( - 1;3;0)\). Tích \(\overrightarrow u .\overrightarrow v \) bằng:
12
-11
0
11
Bài 18 :
Trong mặt phẳng tọa độ Oxyz, cho hai vecto \(\overrightarrow u = \overrightarrow i + 3\overrightarrow j + 2\overrightarrow k \), \(\overrightarrow v = 2\overrightarrow i + \overrightarrow j + 5\overrightarrow k \). Tích \(\overrightarrow u .\overrightarrow v \) bằng:
0
6
15
3
Bài 19 :
Cho hai vectơ \(\overrightarrow a = \left( {2;1; - 2} \right)\) và \(\overrightarrow b = \left( {0;2m; - 4} \right)\). Giá trị của tham số \(m\) để hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) vuông góc với nhau là
A. \(m = - 4\).
B. \(m = - 2\).
C. \(m = 2\).
D. \(m = 4\).
Bài 20 :
Cho hai vectơ \(\overrightarrow u ,\overrightarrow v \) thoả mãn \(\left| {\overrightarrow u } \right| = 2,\left| {\overrightarrow v } \right| = 1\) và \(\left( {\overrightarrow u ,\overrightarrow v } \right) = {60^ \circ }\). Tính góc giữa hai vectơ \(\overrightarrow v \) và \(\overrightarrow u - \overrightarrow v \).
Bài 21 :
Trong không gian, cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) tạo với nhau một góc \({60^ \circ }\) và \(\left| {\overrightarrow a } \right| = 3cm,\left| {\overrightarrow b } \right| = 4cm\). Khi đó \(\overrightarrow a .\overrightarrow b \) bằng:
A. 12
B. 6
C. \(6\sqrt 3 \)
D. ‒6
Bài 22 :
Tích vô hướng của hai vectơ \(\overrightarrow u = \left( { - 2;1;3} \right)\) và \(\overrightarrow v = \left( { - 3;2;5} \right)\) là:
A. \(\sqrt {14} .\sqrt {38} \)
B. \( - \sqrt {14} .\sqrt {38} \)
C. 23
D. ‒23
Bài 23 :
Trong không gian \(Oxyz\), cho điểm \(\overrightarrow a = \left( {1;2;4} \right)\) và \(\overrightarrow b = \left( {2;1;5} \right)\). Tích vô hướng \(\left( {\overrightarrow a + \overrightarrow b } \right) \cdot \overrightarrow a \) bằng
A. 54
B. -3
C. -6
D. 45
Bài 24 :
Trong không gian Oxyz, cho hình chóp S.ABC với
\(S\left( { - 2;1;3} \right),{\rm{ }}A\left( { - 4;3;2} \right),{\rm{ }}B\left( {0;2;1} \right),C\left( { - 2;1 + \sqrt 3 ;3} \right)\).
a) Chứng minh rằng hai cạnh bên SA, SB bằng nhau và vuông góc với nhau.
b) Tính số đo của \(\widehat {ASC}\) (làm tròn kết quả đến hàng phần trăm).
Bài 25 :
Trong không gian Oxyz, cho \(\vec a = (1;0;1)\), \(\vec b = (1;1;0)\) và \(\vec c = ( - 4;3;m)\).
a) Tìm góc giữa hai vectơ \(\vec a\) và \(\vec b\).
b) Tìm m để vectơ \(\vec d = 2\vec a + 3\vec b\) vuông góc với \(\vec c\).
Bài 26 :
Trong không gian Oxyz, cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(2; -1; 1). Tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).
Bài 27 :
Tích vô hướng của hai vectơ \(\vec a = (1;1;1)\) và \(\vec b = ( - 1;2;1)\) bằng:
A. \(\sqrt 3 \cdot \sqrt 6 \).
B. \( - \sqrt 3 \cdot \sqrt 6 \).
C. \(2\).
D. \(\sqrt 2 \).
Bài 28 :
Nếu \(\vec a = (1;1;0)\), \(\vec b = (1;1; - 3)\) thì \(\cos (\vec a,\vec b)\) bằng:
A. \(\frac{{\sqrt {22} }}{{11}}\).
B. \(\frac{{11}}{2}\).
C. \(\frac{{11}}{{\sqrt {22} }}\).
D. \(\frac{2}{{11}}\).
Bài 29 :
Trong không gian với hệ trục tọa độ Oxyz, cho hai vecto \(\overrightarrow a = (2;1;0)\) và \(\overrightarrow b = ( - 1;0; - 2)\). Tính \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).
\(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = - \frac{2}{{25}}\)
\(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = - \frac{2}{5}\)
\(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{2}{{25}}\)
\(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{2}{5}\)
Bài 30 :
Trong không gian với hệ trục tọa độ Oxyz, cho hai vecto \(\overrightarrow u = (3;0;1)\) và \(\overrightarrow v = (2;1;0)\). Tính tích vô hướng \(\overrightarrow u .\overrightarrow v \).
\(\overrightarrow u .\overrightarrow v = 8\)
\(\overrightarrow u .\overrightarrow v = 6\)
\(\overrightarrow u .\overrightarrow v = 0\)
\(\overrightarrow u .\overrightarrow v = - 6\)