Đề bài

Hệ phương trình \(\left\{ \begin{array}{l}2\left( {x - 2y} \right) + 3\left( {x + 2y} \right) = 4\\\left( {x - y} \right) + 2\left( {x + y} \right) = 1\end{array} \right.\) có cặp nghiệm duy nhất \(\left( {{x_0};{y_0}} \right)\). Tính giá trị của biểu thức \(A =  - 25{x_0} - 7{y_0}\).

Đáp án:

Đáp án

Đáp án:

Phương pháp giải

Biến đổi hệ phương trình về dạng hệ hai phương trình bậc nhất hai ẩn và giải hệ phương trình đó.

Thay giá trị \({x_0},{y_0}\) vào biểu thức A để tính giá trị của biểu thức.

Ta có: \(\left\{ \begin{array}{l}2\left( {x - 2y} \right) + 3\left( {x + 2y} \right) = 4\\\left( {x - y} \right) + 2\left( {x + y} \right) = 1\end{array} \right.\) hay \(\left\{ \begin{array}{l}2x - 4y + 3x + 6y = 4\\x - y + 2x + 2y = 1\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}5x + 2y = 4\\3x + y = 1\end{array} \right.\)

Nhân phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}5x + 2y = 4\\6x + 2y = 2\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x =  - 2\\3.\left( { - 2} \right) + y = 1\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x =  - 2\\y = 7\end{array} \right.\).

Thay vào A, ta được: \(A =  - 25.\left( { - 2} \right) - 7.7 = 1\).

Đáp án: 1

Các bài tập cùng chuyên đề

Bài 1 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x - y$

  • A.

    $x - y =  - 1$

  • B.

    $x - y = 1$

  • C.

    $x - y = 0$

  • D.

    $x - y = 2$

Xem lời giải >>

Bài 2 :

Cho hệ phương trình $\left\{ \begin{array}{l}\dfrac{2}{x} + y = 3\\\dfrac{1}{x} - 2y = 4\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{x}{y}$

  • A.

    $2$

  • B.

    $ - 2$

  • C.

    $ - \dfrac{1}{2}$

  • D.

    $\dfrac{1}{2}$

Xem lời giải >>

Bài 3 :

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}5(x + 2y) - 3(x - y) = 99\\x - 3y = 7x - 4y - 17\end{array} \right.\)

  • A.

    $2$

  • B.

    Vô số 

  • C.

    $1$

  • D.

    $0$

Xem lời giải >>

Bài 4 :

Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}x + \dfrac{y}{2} = \dfrac{{2x - 3}}{2}\\\dfrac{x}{2} + 3y = \dfrac{{25 - 9y}}{8}\end{array} \right.\)

  • A.

    $x > 0;y < 0$

  • B.

    $x < 0;y < 0$

  • C.

    $x < 0;y > 0$

  • D.

    $x > 0;y > 0$

Xem lời giải >>

Bài 5 :

Tìm $a,b$ để hệ phương trình  $\left\{ \begin{array}{l}2ax + by =  - 1\\bx - ay = 5\end{array} \right.$

có nghiệm là $\left( {3; - 4} \right)$.

  • A.

    $a = \dfrac{1}{2};b = 1$

  • B.

    $a =  - \dfrac{1}{2};b = 1$

  • C.

    $a = \dfrac{1}{2};b =  - 1$

  • D.

    $a =  - \dfrac{1}{2};b =  - 1$

Xem lời giải >>

Bài 6 :

Nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{7}{{\sqrt x  - 7}} - \dfrac{4}{{\sqrt y  + 6}} = \dfrac{5}{3}\\\dfrac{5}{{\sqrt x  - 7}} + \dfrac{3}{{\sqrt y  + 6}} = 2\dfrac{1}{6}\end{array} \right.\) có tính chất là:

  • A.

    $x;y$ nguyên dương

  • B.

    $x;y$ là số vô tỉ

  • C.

    $x;y$ nguyên âm

  • D.

    $x$ nguyên dương, $y$ không âm

Xem lời giải >>

Bài 7 :

Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( { - 4; - 2} \right);B\left( {2;1} \right)\).

  • A.

    \(a = 0;b = \dfrac{1}{2}\)

  • B.

    \(a = \dfrac{1}{2};b = 0\)

  • C.

    \(a = 1;b = 1\)

  • D.

    \(a =  - \dfrac{1}{2};b = \dfrac{1}{2}\)

Xem lời giải >>

Bài 8 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x + 3y =  - 2\\3x - 2y =  - 3\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x + y$

  • A.

    $x + y =  - 1$

  • B.

    $x + y = 1$

  • C.

    $x + y = 0$

  • D.

    $x + y = 2$

Xem lời giải >>

Bài 9 :

Cho hệ phương trình $\left\{ \begin{array}{l}x + \dfrac{1}{y} = 2\\2x - \dfrac{3}{y} = 1\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{{5x}}{y}$

  • A.

    $\dfrac{{35}}{3}$

  • B.

    $\dfrac{{21}}{5}$

  • C.

    $\dfrac{7}{3}$

  • D.

    $\dfrac{{21}}{{25}}$

Xem lời giải >>

Bài 10 :

Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2(x + y) - 3(x - y) = 4\\x + 4y = 2x - y + 5\end{array} \right.\) là

  • A.

    $2$

  • B.

    Vô số

  • C.

    $1$

  • D.

    $0$

Xem lời giải >>

Bài 11 :

Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{{x + y}}{5} = \dfrac{{x - y}}{3}\\\dfrac{x}{4} = \dfrac{y}{2} + 1\end{array} \right..\) 

  • A.

    $x > 0;y < 0$

  • B.

    $x < 0;y < 0$

  • C.

    $x < 0;y > 0$

  • D.

    $x > 0;y > 0$

Xem lời giải >>

Bài 12 :

Tìm $a,b$ để hệ phương trình  $\left\{ \begin{array}{l}4ax + 2by =  - 3\\3bx + ay = 8\end{array} \right.$ có nghiệm là $\left( {2; - 3} \right)$.

  • A.

    $a = 1;b = 11$

  • B.

    $a =  - 1;b = \dfrac{{11}}{6}$

  • C.

    $a = 1;b =  - \dfrac{{11}}{6}$

  • D.

    $a = 1;b = \dfrac{{11}}{6}$

Xem lời giải >>

Bài 13 :

Nghiệm $\left( {x;y} \right)$của hệ phương trình  \(\left\{ \begin{array}{l}\dfrac{1}{{x - 2}} + \dfrac{1}{{y + 1}} = 2\\\dfrac{2}{{x - 2}} - \dfrac{3}{{y - 1}} = 1\end{array} \right.\) có tính chất là:

  • A.

    $x;y$  là số nguyên    

  • B.

    $x;y$ là số vô tỉ

  • C.

    $x;y$ là các phân số tối giản có tổng các tử số là \(27\)

  • D.

    $x$ nguyên dương, $y$ không âm

Xem lời giải >>

Bài 14 :

Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 ;2} \right);B\left( {0;2} \right)\).

  • A.

    \(a = 0;b = 2\)      

  • B.

    \(a = \dfrac{1}{2};b = 0\)      

  • C.

    \(a = 1;b = 1\)

  • D.

    \(a =  - \dfrac{1}{2};b = \dfrac{1}{2}\)

Xem lời giải >>

Bài 15 :

Gọi \(\left( {{x_0};y{  _0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 3y =  - 7\\x + 2y =  - 4\end{array} \right.\). Tính \(S = {x_0} + {y_0}.\)

  • A.
    \(S =  - 5.\)
  • B.
    \(S =  - 1.\)
  • C.
    \(S = 1.\)
  • D.
    \(S = 5.\)
Xem lời giải >>

Bài 16 :

Cho hệ phương trình \(\left\{ \begin{align} & (a-2)x+5by=25 \\ & 2ax-(b-2)y=5 \\\end{align} \right.\). Tìm giá trị của a và b để hệ có nghiệm (x;y)=(3;-1).

  • A.
    \(a=2,\,b=-5\)              
  • B.
    \(a=-1,\,b=-4\)                     
  • C.
    \(a=3,\,b=4\)                                
  • D.
      \(a=-3,\,b=5\)
Xem lời giải >>

Bài 17 :

Bằng phương pháp cộng đại số, giải hệ phương trình \(\left\{ \begin{array}{l} - 0.5x + 0.5y = 1\\ - 2x + 2y = 8.\end{array} \right.\)

Xem lời giải >>

Bài 18 :

Cho hệ phương trình \(\left( {II} \right)\left\{ \begin{array}{l}2x + 2y = 3\\x - 2y = 6\end{array} \right..\) Ta thấy hệ số của y trong hai phương trình là hai số đối của nhau (tổng của chúng bằng 0) . Từ đặc điểm đó, hãy giải hệ phương trình đã cho theo hướng dẫn sau:

1. Cộng từng vế của hai phương trình trong hệ để được phương trình một ẩn x. Giải phương trình này để tìm x.

2. Sử dụng giá trị x tìm được, thay vào một trong hai phương trình của hệ để tìm giá trị của y rồi viết nghiệm của hệ phương trình đã cho. 

Xem lời giải >>

Bài 19 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l} - 4x + 3y = 0\\4x - 5y =  - 8;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + 3y = 0\\x + 3y = 9.\end{array} \right.\)

Xem lời giải >>

Bài 20 :

Giải hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 6\\ - 5x + 2y =  4\end{array} \right.\) bằng phương pháp cộng đại số. 

Xem lời giải >>

Bài 21 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số;

a) \(\left\{ \begin{array}{l}3x + 2y = 6\\2x - 2y = 14;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5;\end{array} \right.\)

c) \(\left\{ \begin{array}{l} - 2x + 6y = 8\\3x - 9y =  - 12.\end{array} \right.\)

Xem lời giải >>

Bài 22 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - y =  - 3\\ - 2{m^2}x + 9y = 3\left( {m + 3} \right)\end{array} \right.,\) trong đó m là số đã cho. Giải hệ phương trình trong mỗi trường hợp sau:

a) \(m =  - 2;\)

b) \(m =  - 3;\)

c) \(m = 3.\)

Xem lời giải >>

Bài 23 :

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l}5x + 7y = - 1\\3x + 2y = - 5;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}2x - 3y = 11\\ - 0,8x + 1,2y = 1;\end{array} \right.\)

c) \(\left\{ \begin{array}{l}4x - 3y = 6\\0,4x + 0,2y = 0,8.\end{array} \right.\)

Xem lời giải >>

Bài 24 :

Tìm a và b sao cho hệ phương trình \(\left\{ \begin{array}{l}ax + by = 1\\ax + \left( {2 - b} \right)y = 3\end{array} \right.\) có nghiệm là \(\left( {1; - 2} \right).\)

Xem lời giải >>

Bài 25 :

Kí hiệu \(\left( {{d_1}} \right)\) là đường thẳng \(x + 2y = 4,\left( {{d_2}} \right)\) là đường thẳng \(x - y = 1\).

a) Vẽ \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) trên cùng một mặt phẳng tọa độ.

b) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 4\\x - y = 1\end{array} \right.\) để tìm tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\).

Xem lời giải >>

Bài 26 :

Cho hai hệ phương trình:

\(\left\{ {\begin{array}{*{20}{c}}{3x = 6}\\{x + y = 5}\end{array}} \right.\) (I) và \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 1}\\{x + y = 5}\end{array}} \right.\)(II)

a) Giải hệ phương trình (I) và hệ phương trình (II) bằng phương pháp thế. Có nhận xét gì về nghiệm của hai hệ này?

b) Bằng cách cộng từng vế của hai phương trình của hệ (II), ta nhận được một phương trình mới. Thay phương trình thứ nhất của hệ (II) bằng phương trình mới đó. Có nhận xét gì về kết quả nhận được?

Xem lời giải >>

Bài 27 :

Giải các hệ phương trình:

a) \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y =  - 14}\\{2x + 3y = 2}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{4x + 5y = 15}\\{6x - 4y = 11}\end{array}} \right.\)

Xem lời giải >>

Bài 28 :

Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A(2;-2) và B(-1;3).

Xem lời giải >>

Bài 29 :

Cho hệ phương trình: \(\left\{ \begin{array}{l}x + y = 7\,\,\,\,\left( 1 \right)\\x - y = 1\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\,\,\,\,\,\left( {II} \right)\)

a. Các hệ số của \(y\) trong hai phương trình (1) và (2) có đặc điểm gì?

b. Cộng từng vế hai phương trình của hệ (II), ta nhận được phương trình nào?

c. Giải phương trình nhận được ở câu b. Từ đó, ta tìm được nghiệm của hệ phương trình (II).

Xem lời giải >>

Bài 30 :

Giải hệ phương trình: \(\left\{ \begin{array}{l}3x + 2y = 5\,\,\,\,\,\left( 1 \right)\\5x + 2y = 7\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Xem lời giải >>