Nội dung từ Loigiaihay.Com
Bác An chia số tiền \(630\) triệu đồng của mình cho hai khoản đầu tư. Sau một năm lợi nhuận thu về là \(157\) triệu đồng. Lợi nhuận của khoản đầu tư thứ nhất là \(10\% \), lợi nhuận của khoản đầu tư thứ hai là \(30\% \). Tính số tiền bác An đầu tư cho mỗi khoản?
Gọi số tiền đầu tư cho mỗi khoản lần lượt là \(x,y\) (\(x,y \in {\mathbb{N}^*};x,y \le 630\) )
Lập hệ phương trình với x và y.
Từ đó giải hệ phương trình.
Gọi số tiền đầu tư cho mỗi khoản lần lượt là \(x,y\) (\(x,y \in {\mathbb{N}^*};x,y \le 630\) )
Vì bác An chia số tiền \(630\) triệu đồng của mình cho hai khoản đầu tư nên \(x + y = 630\) (triệu đồng)
Vì lợi nhuận của khoản đầu tư thứ nhất là \(10\% \), lợi nhuận của khoản đầu tư thứ hai là \(30\% \) và sau một năm lợi nhuận thu về là \(157\) triệu đồng nên \(10\% x + 30\% y = 157\) hay \(0,1x + 0,3y = 157\)
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 630}\\{0,1x + 0,3y = 157}\end{array}} \right.\)
Giải hệ phương trình:
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{x + y = 630}\\{0,1x + 0,3y = 157}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{x + y = 630}\\{x + 3y = 1570}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{x + y = 630}\\{2y = 940}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{x + y = 630}\\{y = 470}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{x = 160(TM)}\\{y = 470(TM)}\end{array}} \right.\end{array}\)
Vậy khoản đầu tư thứ nhất là \(160\) triệu đồng, khoản đầu tư thứ hai là \(470\) triệu đồng.
Các bài tập cùng chuyên đề
Bài 1 :
Cho hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x - y$
$x - y = - 1$
$x - y = 1$
$x - y = 0$
$x - y = 2$
Bài 2 :
Cho hệ phương trình $\left\{ \begin{array}{l}\dfrac{2}{x} + y = 3\\\dfrac{1}{x} - 2y = 4\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{x}{y}$
$2$
$ - 2$
$ - \dfrac{1}{2}$
$\dfrac{1}{2}$
Bài 3 :
Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}5(x + 2y) - 3(x - y) = 99\\x - 3y = 7x - 4y - 17\end{array} \right.\)là
$2$
Vô số
$1$
$0$
Bài 4 :
Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}x + \dfrac{y}{2} = \dfrac{{2x - 3}}{2}\\\dfrac{x}{2} + 3y = \dfrac{{25 - 9y}}{8}\end{array} \right.\)
$x > 0;y < 0$
$x < 0;y < 0$
$x < 0;y > 0$
$x > 0;y > 0$
Bài 5 :
Tìm $a,b$ để hệ phương trình $\left\{ \begin{array}{l}2ax + by = - 1\\bx - ay = 5\end{array} \right.$
có nghiệm là $\left( {3; - 4} \right)$.
$a = \dfrac{1}{2};b = 1$
$a = - \dfrac{1}{2};b = 1$
$a = \dfrac{1}{2};b = - 1$
$a = - \dfrac{1}{2};b = - 1$
Bài 6 :
Nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{7}{{\sqrt x - 7}} - \dfrac{4}{{\sqrt y + 6}} = \dfrac{5}{3}\\\dfrac{5}{{\sqrt x - 7}} + \dfrac{3}{{\sqrt y + 6}} = 2\dfrac{1}{6}\end{array} \right.\) có tính chất là:
$x;y$ nguyên dương
$x;y$ là số vô tỉ
$x;y$ nguyên âm
$x$ nguyên dương, $y$ không âm
Bài 7 :
Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( { - 4; - 2} \right);B\left( {2;1} \right)\).
\(a = 0;b = \dfrac{1}{2}\)
\(a = \dfrac{1}{2};b = 0\)
\(a = 1;b = 1\)
\(a = - \dfrac{1}{2};b = \dfrac{1}{2}\)
Bài 8 :
Cho hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = - 2\\3x - 2y = - 3\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x + y$
$x + y = - 1$
$x + y = 1$
$x + y = 0$
$x + y = 2$
Bài 9 :
Cho hệ phương trình $\left\{ \begin{array}{l}x + \dfrac{1}{y} = 2\\2x - \dfrac{3}{y} = 1\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{{5x}}{y}$
$\dfrac{{35}}{3}$
$\dfrac{{21}}{5}$
$\dfrac{7}{3}$
$\dfrac{{21}}{{25}}$
Bài 10 :
Số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2(x + y) - 3(x - y) = 4\\x + 4y = 2x - y + 5\end{array} \right.\) là
$2$
Vô số
$1$
$0$
Bài 11 :
Kết luận nào đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{{x + y}}{5} = \dfrac{{x - y}}{3}\\\dfrac{x}{4} = \dfrac{y}{2} + 1\end{array} \right..\)
$x > 0;y < 0$
$x < 0;y < 0$
$x < 0;y > 0$
$x > 0;y > 0$
Bài 12 :
Tìm $a,b$ để hệ phương trình $\left\{ \begin{array}{l}4ax + 2by = - 3\\3bx + ay = 8\end{array} \right.$ có nghiệm là $\left( {2; - 3} \right)$.
$a = 1;b = 11$
$a = - 1;b = \dfrac{{11}}{6}$
$a = 1;b = - \dfrac{{11}}{6}$
$a = 1;b = \dfrac{{11}}{6}$
Bài 13 :
Nghiệm $\left( {x;y} \right)$của hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{{x - 2}} + \dfrac{1}{{y + 1}} = 2\\\dfrac{2}{{x - 2}} - \dfrac{3}{{y - 1}} = 1\end{array} \right.\) có tính chất là:
$x;y$ là số nguyên
$x;y$ là số vô tỉ
$x;y$ là các phân số tối giản có tổng các tử số là \(27\)
$x$ nguyên dương, $y$ không âm
Bài 14 :
Tìm \(a,b\) biết đường thẳng \(d:y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 ;2} \right);B\left( {0;2} \right)\).
\(a = 0;b = 2\)
\(a = \dfrac{1}{2};b = 0\)
\(a = 1;b = 1\)
\(a = - \dfrac{1}{2};b = \dfrac{1}{2}\)
Bài 15 :
Gọi \(\left( {{x_0};y{ _0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 3y = - 7\\x + 2y = - 4\end{array} \right.\). Tính \(S = {x_0} + {y_0}.\)
Bài 16 :
Cho hệ phương trình \(\left\{ \begin{align} & (a-2)x+5by=25 \\ & 2ax-(b-2)y=5 \\\end{align} \right.\). Tìm giá trị của a và b để hệ có nghiệm (x;y)=(3;-1).
Bài 17 :
Bằng phương pháp cộng đại số, giải hệ phương trình \(\left\{ \begin{array}{l} - 0.5x + 0.5y = 1\\ - 2x + 2y = 8.\end{array} \right.\)
Bài 18 :
Cho hệ phương trình \(\left( {II} \right)\left\{ \begin{array}{l}2x + 2y = 3\\x - 2y = 6\end{array} \right..\) Ta thấy hệ số của y trong hai phương trình là hai số đối của nhau (tổng của chúng bằng 0) . Từ đặc điểm đó, hãy giải hệ phương trình đã cho theo hướng dẫn sau:
1. Cộng từng vế của hai phương trình trong hệ để được phương trình một ẩn x. Giải phương trình này để tìm x.
2. Sử dụng giá trị x tìm được, thay vào một trong hai phương trình của hệ để tìm giá trị của y rồi viết nghiệm của hệ phương trình đã cho.
Bài 19 :
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a) \(\left\{ \begin{array}{l} - 4x + 3y = 0\\4x - 5y = - 8;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x + 3y = 0\\x + 3y = 9.\end{array} \right.\)
Bài 20 :
Giải hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 6\\ - 5x + 2y = 4\end{array} \right.\) bằng phương pháp cộng đại số.
Bài 21 :
Giải các hệ phương trình sau bằng phương pháp cộng đại số;
a) \(\left\{ \begin{array}{l}3x + 2y = 6\\2x - 2y = 14;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5;\end{array} \right.\)
c) \(\left\{ \begin{array}{l} - 2x + 6y = 8\\3x - 9y = - 12.\end{array} \right.\)
Bài 22 :
Cho hệ phương trình \(\left\{ \begin{array}{l}2x - y = - 3\\ - 2{m^2}x + 9y = 3\left( {m + 3} \right)\end{array} \right.,\) trong đó m là số đã cho. Giải hệ phương trình trong mỗi trường hợp sau:
a) \(m = - 2;\)
b) \(m = - 3;\)
c) \(m = 3.\)
Bài 23 :
Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a) \(\left\{ \begin{array}{l}5x + 7y = - 1\\3x + 2y = - 5;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}2x - 3y = 11\\ - 0,8x + 1,2y = 1;\end{array} \right.\)
c) \(\left\{ \begin{array}{l}4x - 3y = 6\\0,4x + 0,2y = 0,8.\end{array} \right.\)
Bài 24 :
Tìm a và b sao cho hệ phương trình \(\left\{ \begin{array}{l}ax + by = 1\\ax + \left( {2 - b} \right)y = 3\end{array} \right.\) có nghiệm là \(\left( {1; - 2} \right).\)
Bài 25 :
Kí hiệu \(\left( {{d_1}} \right)\) là đường thẳng \(x + 2y = 4,\left( {{d_2}} \right)\) là đường thẳng \(x - y = 1\).
a) Vẽ \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) trên cùng một mặt phẳng tọa độ.
b) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 4\\x - y = 1\end{array} \right.\) để tìm tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\).
Bài 26 :
Cho hai hệ phương trình:
\(\left\{ {\begin{array}{*{20}{c}}{3x = 6}\\{x + y = 5}\end{array}} \right.\) (I) và \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 1}\\{x + y = 5}\end{array}} \right.\)(II)
a) Giải hệ phương trình (I) và hệ phương trình (II) bằng phương pháp thế. Có nhận xét gì về nghiệm của hai hệ này?
b) Bằng cách cộng từng vế của hai phương trình của hệ (II), ta nhận được một phương trình mới. Thay phương trình thứ nhất của hệ (II) bằng phương trình mới đó. Có nhận xét gì về kết quả nhận được?
Bài 27 :
Giải các hệ phương trình:
a) \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y = - 14}\\{2x + 3y = 2}\end{array}} \right.\)
b) \(\left\{ {\begin{array}{*{20}{c}}{4x + 5y = 15}\\{6x - 4y = 11}\end{array}} \right.\)
Bài 28 :
Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A(2;-2) và B(-1;3).
Bài 29 :
Cho hệ phương trình: \(\left\{ \begin{array}{l}x + y = 7\,\,\,\,\left( 1 \right)\\x - y = 1\,\,\,\,\left( 2 \right)\end{array} \right.\,\,\,\,\,\,\,\left( {II} \right)\)
a. Các hệ số của \(y\) trong hai phương trình (1) và (2) có đặc điểm gì?
b. Cộng từng vế hai phương trình của hệ (II), ta nhận được phương trình nào?
c. Giải phương trình nhận được ở câu b. Từ đó, ta tìm được nghiệm của hệ phương trình (II).
Bài 30 :
Giải hệ phương trình: \(\left\{ \begin{array}{l}3x + 2y = 5\,\,\,\,\,\left( 1 \right)\\5x + 2y = 7\,\,\,\,\,\left( 2 \right)\end{array} \right.\)