Nội dung từ Loigiaihay.Com
1. Thực hiện phép tính:
a) \({\left( {3x + 4} \right)^2} - \left( {x - 8} \right)\left( {9x + 3} \right)\)
b) \(\frac{1}{{2x - 5}} + \frac{1}{{2x + 5}} + \frac{{6x - 25}}{{4{x^2} - 25}}\)
2. Phân tích đa thức thành nhân tử:
a) \(3{x^3}-{\rm{ }}12{\rm{ }}x{y^2}\)
b) \(-4{y^2} + 9 + 12xy-9{x^2}\)
1.
a) Áp dụng hằng đẳng thức bình phương của một tổng và nhân đa thức với đa thức.
b) Áp dụng hằng đẳng thức hiệu hai lập phương và phép cộng đa thức khác mẫu.
2.
a) Đặt nhân tử chung sau đó áp dụng hằng đẳng thức hiệu hai lập phương để phân tích.
b) Nhóm hạng tử sau đó áp dụng hằng đẳng thức bình phương của một hiệu và hiệu hai lập phương để phân tích.
1.
a) \({\left( {3x + 4} \right)^2} - \left( {x - 8} \right)\left( {9x + 3} \right)\)
\(\begin{array}{l} = 9{x^2} + 24x + 16 - 9{x^2} - 3x + 72x + 24\\ = \left( {9{x^2} - 9{x^2}} \right) + \left( {24x - 3x + 72x} \right) + \left( {16 + 24} \right)\\ = 93x + 40\end{array}\)
b) \(\frac{1}{{2x - 5}} + \frac{1}{{2x + 5}} + \frac{{6x - 25}}{{4{x^2} - 25}}\)
\(\begin{array}{l} = \frac{1}{{2x - 5}} + \frac{1}{{2x + 5}} + \frac{{6x - 25}}{{\left( {2x - 5} \right)\left( {2x + 5} \right)}}\\ = \frac{{2x + 5}}{{\left( {2x - 5} \right)\left( {2x + 5} \right)}} + \frac{{2x - 5}}{{\left( {2x - 5} \right)\left( {2x + 5} \right)}} + \frac{{6x - 25}}{{\left( {2x - 5} \right)\left( {2x + 5} \right)}}\\ = \frac{{2x + 5 + 2x - 5 + 6x - 25}}{{\left( {2x - 5} \right)\left( {2x + 5} \right)}}\\ = \frac{{\left( {2x + 2x + 6x} \right) + \left( {5 - 5 - 25} \right)}}{{\left( {2x - 5} \right)\left( {2x + 5} \right)}}\\ = \frac{{10x - 25}}{{\left( {2x - 5} \right)\left( {2x + 5} \right)}}\\ = \frac{{5\left( {2x - 5} \right)}}{{\left( {2x - 5} \right)\left( {2x + 5} \right)}}\\ = \frac{5}{{2x + 5}}\end{array}\)
2.
a) \(3{x^3}-{\rm{ }}12{\rm{ }}x{y^2}\)\( = 3x\left( {{x^2} - 4{y^2}} \right)\)\( = 3x\left( {x - 2y} \right)\left( {x + 2y} \right)\)
b) \(-4{y^2} + 9 + 12xy-9{x^2}\)
\(\begin{array}{l} = 9 - \left( {4{y^2} - 12xy + 9{x^2}} \right)\\ = 9-{\left( {2y-3x} \right)^2}\\ = \left( {3-2y + 3x} \right)\left( {3 + 2y-3x} \right)\end{array}\)
Các bài tập cùng chuyên đề
Bài 1 :
Gọi \({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó \({x_1}\; + {x_2}\; + {x_3}\) bằng
\(\frac{-5}{2}\).
Bài 2 :
Phân tích đa thức \({x^3} - x\) thành nhân tử.
Em hãy nêu ý kiến của em về lời giải của Tròn và Vuông.
Bài 3 :
Phân tích các đa thức sau thành nhân tử:
\(\begin{array}{l}a)\,{x^2} + xy;\\b)\,6{a^2}b - 18ab;\\c)\,{x^3} - 4x;\\d)\,{x^4} - 8x.\end{array}\)
Bài 4 :
Phân tích các đa thức sau thành nhân tử:
a) \({x^2} - 9 + xy + 3y\)
b) \({x^2}y + {x^2} + xy - 1\)
Bài 5 :
Một mảnh vườn hình vuông có độ dài cạnh bằng x (mét). Người ta làm đường đi xung quanh mảnh vườn, có độ rộng như nhau và bằng y (mét) (H.2.2)
a) Viết biểu thức tính diện tích S của đường bao quanh mảnh vườn theo x và y.
b) Phân tích S thành nhân tử rồi tính A khi x=102 m, y=2 m.
Bài 6 :
Phân tích các đa thức sau thành nhân tử:
\(\begin{array}{l}a)\,{x^2} - 6x + 9 - {y^2};\\b)\,4{x^2} - {y^2} + 4y - 4;\\c)\,xy + {z^2} + xz + yz;\\d)\,{x^2} - 4xy + 4{y^2} + xz - 2yz.\end{array}\)
Bài 7 :
Phân tích các đa thức sau thành nhân tử:
a) \({x^3} + {y^3} + x + y\)
b) \({x^3} - {y^3} + x - y\)
c) \({\left( {x - y} \right)^3} + {\left( {x + y} \right)^3}\)
d) \({x^3} - 3{x^2}y + 3x{y^2} - {y^3} + {y^2} - {x^2}\)
Bài 8 :
Rút gọn các biểu thức:
a) \(\left( {2x - 5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\)
b) \(\left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + \left( {2x - y} \right)\left( {4{x^2} + 2xy + {y^2}} \right)\)
Bài 9 :
Phân tích các đa thức sau thành nhân tử:
a) \(6{x^2} - 24{y^2}\)
b) \(64{x^3} - 27{y^3}\)
c) \({x^4} - 2{x^3} + {x^2}\)
d) \({\left( {x - y} \right)^3} + 8{y^3}\)
Bài 10 :
Tính diện tích của nền nhà có bản vẽ sơ lượng như Hình 1 theo những cách khác nhau, biết \(a = 5\); \(b = 3,5\) (các kích thước tính theo mét). Tính theo cách nào nhanh hơn?
Bài 11 :
Tìm một hình hộp chữ nhật có thể tích \(2{x^3} - 18x\) với (\(x > 3\)) mà độ dài các cạnh đều là biểu thức chứa \(x\).
Bài 12 :
Giải đáp câu hỏi mở đầu (trang 23)
Bài 13 :
Hãy hoàn thành biến đổi sau vào vở để phân tích đa thức thành nhân tử:
\({a^2} + ab + 2a + 2b = \left( {{a^2} + ab} \right) + \left( {2a + 2b} \right) = ...\)
Em có thể biến đổi theo cách khác để phân tích đa thức trên thành nhân tử không?
Bài 14 :
Phân tích các đa thức sau thành nhân tử:
a) \({a^3} - {a^2}b + a - b\)
b) \({x^2} - {y^2} + 2y - 1\)
Bài 15 :
Có thể ghép bốn tấm pin mặt trời với kích thước như Hình 2 thành một hình chữ nhật không? Nếu có, tính độ dài các cạnh và diện tích hình chữ nhật đó. Biết \(a = 0,8\); \(b = 2\) (các kích thước tính theo mét).
Bài 16 :
Phân tích các đa thức sau thành nhân tử:
a) \(4{x^3} - 16x\)
b) \({x^4} - {y^4}\)
c) \(x{y^2} + {x^2}y + \dfrac{1}{4}{y^3}\)
d) \({x^2} + 2x - {y^2} + 1\)
Bài 17 :
Khi phân tích đa thức \(P = {x^4} - 4{x^2}\) thành nhân tử thì được:
A. \(P = {x^2}(x - 2)(x + 2)\)
B. \(P = x(x - 2)(x + 2)\)
C. \(P = {x^2}(x - 4)(x + 4)\)
D. \(P = x(x - 4)(x + 2)\)
Bài 18 :
Phân tích các đa thức sau thành nhân tử:
a) \({\left( {x - 1} \right)^2} - 4\)
b) \(4{x^2} + 12x + 9\)
c) \({x^3} - 8{y^6}\)
d) \({x^5} - {x^3} - {x^2} + 1\)
e) \( - 4{x^3} + 4{x^2} + x - 1\)
f) \(8{x^3} + 12{x^2} + 6x + 1\)
Bài 19 :
Bác Hoa gửi tiết kiệm a đồng kì hạn 12 tháng ở một ngân hàng với lãi suất x%/năm
a) Viết công thức tính số tiền bác Hoa có được sau 12 tháng dưới dạng tích, biết bác Hoa không rút tiền ra khỏi ngân hàng trong 12 tháng đó.
b) Sau kì hạn 12 tháng, tiền lãi của kì hạn đó được cộng vào tiền vốn, rồi bác Hoa tiếp tục đem gửi cho kì hạn 12 tháng tiếp theo. Viết công thức tính tổng số tiền mà bác Hoa nhận được sau khi gửi 24 tháng trên dưới dạng tích, biết trong 24 tháng đó, lãi xuất ngân hàng không thay đổi và bác Hoa không rút tiền ra khỏi ngân hàng.
Bài 20 :
Phân tích mỗi đa thức sau thành nhân tử:
a) \({\left( {x + 2y} \right)^2} - {\left( {x - y} \right)^2}\)
b) \({\left( {x + 1} \right)^3} + {\left( {x - 1} \right)^3}\)
c) \(9{x^2} - 3x + 2y - 4{y^2}\)
d) \(4{x^2} - 4xy + 2x - y + {y^2}\)
e) \({x^3} + 3{{\rm{x}}^2} + 3{\rm{x}} + 1 - {y^3}\)
g) \({x^3} - 2{{\rm{x}}^2}y + x{y^2} - 4{\rm{x}}\)
Bài 21 :
Trả lời câu hỏi nêu trong phần Khởi động: Hưng nhận xét rằng nếu \(n\)là số nguyên dương thì \({n^3} - n\) luôn là tích của ba số tự nhiên liên tiếp. Nhận xét của Hưng đúng hay sai?
Bài 22 :
Phân tích đa thức sau thành nhân tử:
a) \(6{x^2}{y^2} + 15{x^2}y - 9x{y^2}\)
b) \(10xy - 25{x^2} - {y^2}\)
c) \(27{x^3} - \frac{1}{{64}}\)
d) \(8{x^3} + 12{x^2}y + 6x{y^2} + {y^3}\)
Bài 23 :
Phân tích các đa thức sau thành nhân tử:
\(a)xy + xz - 13y - 13z\)
\(b){x^2} + 8x - 9{y^2} + 16\)
\(c){x^3}{y^2} - 2{x^2}y + x\)
\(d){x^2}y - 4{x^2} + 16 - 4y\)
Bài 24 :
Tính nhanh:
\(a){2022^2} - {22^2}\)
\(b){37^2} + {31^2} - {32^2} + 62.37\)
Bài 25 :
Phân tích các đa thức sau thành nhân tử:
\(a){x^2} - 4x + 3\)
\(b){x^4} + 4\)
Bài 26 :
Phân tích các đa thức sau thành nhân tử:
a) \(2xy + yz - 8x - 4z\)
b) \(4{x^2} + 4x - 49{y^2} + 1\)
c) \(9{x^2}{y^4} - 6x{y^3} + {y^2}\)
d) \({x^3} + x - 8{y^3} - 2y\)
Bài 27 :
Phân tích mỗi đa thức sau thành nhân tử:
a) \({x^3}\left( {13xy - 5} \right) - {y^3}\left( {5 - 13xy} \right)\)
b) \(8{x^3}yz + 12{x^2}yz + 6xyz + yz\)
Bài 28 :
Tính giá trị của mỗi biểu thức sau:
a) \(A = {x^2} + xy + \frac{{{y^2}}}{4}\) biết \(x + \frac{y}{2} = 100\)
b) \(B = 25{x^2}z - 10xyz + {y^2}z\) biết \(5x - y = - 20\) và \(z = - 5\)
c) \(C = {x^3}yz + 3{x^2}{y^2}z + 3x{y^3}z + {y^4}z\) biết \(x + y = - 0,5\) và \(yz = 8\)
Bài 29 :
Chứng minh biểu thức \(B = {x^5} - 15{x^2} - x + 5\) chia hết cho 5 với mọi số nguyên \(x\)
Bài 30 :
Phân tích các đa thức sau thành nhân tử:
a) \(4{x^3} - 36x\);
b) \(4x{y^2} - 4{x^2}y - {y^3}\);
c) \({x^6} - 64\).