Bài 1 trang 93 SGK Hình học 10

Cho hình chữ nhật ABCD. Biết các đỉnh A(5, 1), C(0, 6) và phương trình CD: x + 2y – 12 = 0

Đề bài

Cho hình chữ nhật \(ABCD\). Biết các đỉnh \(A(5; 1), C(0; 6)\) và phương trình \(CD: x + 2y – 12 = 0.\)

Tìm phương trình các đường thẳng chứa các cạnh còn lại.

Video hướng dẫn giải

Lời giải chi tiết

+) Viết phương trình \(AB\).

\(CD\) có VTPT \(\overrightarrow {{n_1}}  = \left( {1;2} \right)\).

\(AB//CD\) nên có VTPT \(\overrightarrow {{n_1}}  = \left( {1;2} \right)\)

Mà \(AB\) đi qua \(A\left( {5;1} \right)\) nên \(AB:1\left( {x - 5} \right) + 2\left( {y - 1} \right) = 0\) hay \(x + 2y - 7 = 0\).

+) Viết phương trình \(AD\).

\(CD\) có VTPT \(\overrightarrow {{n_1}}  = \left( {1;2} \right)\) nên có VTCP \(\overrightarrow {{u_1}}  = \left( {2; - 1} \right)\).

\(AD \bot CD\) nên nhận \(\overrightarrow {{n_2}}  = \overrightarrow {{u_1}}  = \left( {2; - 1} \right)\) làm VTPT

Mà \(AD\) đi qua \(A\left( {5;1} \right)\) nên \(AD:2\left( {x - 5} \right) - 1.\left( {y - 1} \right) = 0\) hay \(2x - y - 9 = 0\).

+) Viết phương trình \(BC\).

\(BC \bot CD\) nên nhận \(\overrightarrow {{n_2}}  = \overrightarrow {{u_1}}  = \left( {2; - 1} \right)\) làm VTPT.

Mà \(BC\) đi qua \(C\left( {0;6} \right)\) nên \(BC:2\left( {x - 0} \right) - 1\left( {y - 6} \right) = 0\) hay \(2x - y + 6 = 0\).

Vậy \(AB: x +2 y – 7 = 0\)

\(BC : 2x  - y  + 6 = 0\)

\(AD : 2x – y – 9 = 0\)

Cách khác:

Cạnh \(AB\) là đường thẳng đi qua \(A( 5; 1)\) và song song với \(CD\).

Vì \(CD\) có phương trình \(x + 2y – 12 = 0\) nên phương trình của \(AB\) có dạng: \(x + 2y + m = 0\)

\(AB\) đi qua \(A(5; 1)\) nên ta có: \(5 + 2.1 + m = 0 ⇒ m = -7\)

Vậy phương trình của \(AB\) là: \(x + 2y – 7 = 0.\)

\(AD\) là đường thẳng qua \(A\) và vuông góc với \(CD\).

Phương trình của \(CD\) là: \(x + 2y – 12 = 0\) nên phương trình của \(AD\) có dạng: \(2x – y + n  = 0\)

\(AD\) đi qua \(A(5, 1)\)  cho ta: \(2.5  - 1 + n = 0 ⇒ n = -9\)

Phương trình của \(AD\): \(2x  - y -  9 = 0\)

\(CB\) là đường  thẳng qua \(C\) và song song với \(AD\) nên phương trình của \(CB\) có dạng: \(2x – y + p = 0\)

\(CB\) đi qua \(C (0; 6)\) nên: \( 2.0 – 6 + p = 0 ⇒ p = 6\)

Phương trình của \(CB\) là: \(2x – y + 6 = 0\)

Vậy \(AB: x +2 y – 7 = 0\)

\(BC : 2x  - y  + 6 = 0\)

\(AD : 2x – y – 9 = 0\)

HocTot.XYZ

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close