Câu 12 trang 225 SGK Đại số và Giải tích 11 Nâng cao

Cho dãy số (un) xác định bởi

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số (un) xác định bởi

\({u_1} = 3\,\text{ và }\,{u_n} = 4{u_{n - 1}} - 1\) với mọi n ≥ 2

Chứng minh rằng :

LG a

\({u_n} = {{{2^{2n + 1}} + 1} \over 3}\)  (1)  với mọi số nguyên n ≥ 1

Lời giải chi tiết:

Với n = 1 ta có \({u_1} = 3 = {{{2^3} + 1} \over 3}\)

(1) đúng với n = 1

Giả sử (1) đúng với n = k tức là ta có : \({u_k} = {{{2^{2k + 1}} + 1} \over 3}\)

Ta chứng minh (1) đúng khi n=k+1 hay \({u_{k + 1}} = \dfrac{{{2^{2\left( {k + 1} \right) + 1}} + 1}}{3}\)

Với n = k + 1 ta có :

\(\eqalign{  & {u_{k + 1}} = 4{u_k} - 1 = 4.{{{2^{2k + 1}} + 1} \over 3} - 1 \cr &= {{4\left( {{2^{2k + 1}} + 1} \right) - 3} \over 3}  \cr  &  = {{{2^{2k + 3}} + 1} \over 3} = {{{2^{2\left( {k + 1} \right)+1}} + 1} \over 3} \cr} \)

Vậy (1) đúng với n = k + 1 do đó (1) đúng với ∀ n ≥ 1

LG b

(u­n) là môt dãy số tăng.

Lời giải chi tiết:

Ta có:

\(\eqalign{  & {u_{n + 1}} - {u_n} = {{{2^{2n + 3}} + 1} \over 3} - {{{2^{2n + 1}} + 1} \over 3} = {{{2^{2n + 1}}\left( {{2^2} - 1} \right)} \over 3}  \cr  &  = {2^{2n + 1}} > 0 \Rightarrow {u_{n + 1}} > {u_n} \cr} \)

⇒ (un) là dãy số tăng.

 HocTot.XYZ

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí

close