Câu 15 trang 213 SGK Giải tích 12 Nâng caoTính diện tích các hình phẳng giới hạn bởi các đường
Lựa chọn câu để xem lời giải nhanh hơn
Tính diện tích các hình phẳng giới hạn bởi các đường LG a y + x2 = 0 và y + 3x2 = 2 Lời giải chi tiết: Phương trình hoành độ giao điểm của hai đường cong là: -x2 = 2 – 3x2 ⇔ x2 = 1 ⇔ x = ± 1 Với \(- 1 \le x \le 1\) thì \(2{x^2} - 2 \le 0 \Rightarrow \left| {2{x^2} - 2} \right| = 2 - 2{x^2}\) Diện tích cần tìm là: \(\eqalign{ LG b y2 – 4x = 4 và 4x – y = 16 Lời giải chi tiết: Ta có: \(\eqalign{ Phương trình tung độ giao điểm của hai đường cong là: \({y^2} - 4 = y + 16 \Leftrightarrow {y^2} - y - 20 = 0 \) \(\Leftrightarrow \left[ \matrix{ Với \(y \in \left( { - 4;5} \right) \Rightarrow {y^2} - y - 20 \le 0\) \( \Rightarrow \left| {{y^2} - y - 20} \right| = - {y^2} + y + 20\) Diện tích cần tìm là: \(\eqalign{ HocTot.XYZ
|