Giải bài 6 trang 90 SGK Giải tích 12Hãy tính: Video hướng dẫn giải Cho \({\log _a}b = 3,{\log _a}c = - 2\) . Hãy tính \(\log_ax\) với: LG a a) \(x = {a^3}{b^2}\sqrt c \) Phương pháp giải: Sử dụng công thức cộng trừ các logarrit cùng cơ số: \(\begin{array}{l} (Giả sử các biểu thức là có nghĩa). Lời giải chi tiết: \(\begin{array}{l}\,{\log _a}x = {\log _a}\left( {{a^3}{b^2}\sqrt c } \right)\\= {\log _a}{a^3} + {\log _a}{b^2} + {\log _a}\sqrt c \\= {\log _a}{a^3} + {\log _a}{b^2} + {\log _a}{c^{\frac{1}{2}}}\\= 3{\log _a}a + 2{\log _a}b + \dfrac{1}{2}{\log _a}c\\= 3 + 2.3 + \dfrac{1}{2}\left( { - 2} \right) = 8\end{array}\)
LG b b) \(x = \dfrac {{a^4}\root 3 \of b }{{c^3}}\) Phương pháp giải: Sử dụng công thức cộng trừ các logarrit cùng cơ số: \(\begin{array}{l} (Giả sử các biểu thức là có nghĩa). Lời giải chi tiết: \(\begin{array}{l}\,{\log _a}x = {\log _a}\dfrac{{{a^4}\sqrt[3]{b}}}{{{c^3}}}\\= {\log _a}{a^4} + {\log _a}\sqrt[3]{b} - {\log _a}{c^3}\\= {\log _a}{a^4} + {\log _a}{b^{\frac{1}{3}}} - {\log _a}{c^3}\\= 4{\log _a}a + \dfrac{1}{3}.{\log _a}b - 3{\log _a}c\\= 4.1 + \dfrac{1}{3}.3 - 3\left( { - 2} \right)\\= 11\end{array}\) HocTot.XYZ
|