Nội dung từ Loigiaihay.Com
Câu hỏi:
Bất phương trình \(\frac{{x - 1}}{{{x^2} + 4x + 3}} \le 0\) có tập nghiệm là:
Phương pháp giải:
Lập bảng xét dấu giải BPT.
Lời giải chi tiết:
\(\frac{{x - 1}}{{{x^2} + 4x + 3}} \le 0 \Leftrightarrow \frac{{x - 1}}{{\left( {x + 1} \right)\left( {x + 3} \right)}} \le 0\) ĐKXĐ: \({x^2} + 4x + 3 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne - 1\\x \ne - 3\end{array} \right.\)
Đặt \(f\left( x \right) = \frac{{x - 1}}{{{x^2} + 4x + 3}}\) . Ta có bảng:
Vậy \(f\left( x \right) \le 0 \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( { - 1;1} \right]\)
Chọn B.