Câu hỏi 2 trang 109 SGK Hình học 11

Cho tứ diện ABCD có ba cạnh AB, AC, AD đôi một vuông góc với nhau....

Đề bài

Cho tứ diện \(ABCD\) có ba cạnh \(AB, AC, AD\) đôi một vuông góc với nhau. Chứng minh rằng các mặt phẳng \((ABC), (ACD), (ADB)\) cũng đôi một vuông góc với nhau.

Video hướng dẫn giải

Lời giải chi tiết

\(AB ⊥ AC, AB ⊥ AD\) nên \(AB ⊥ (ACD)\) (theo định lí trang 99)

\(\left\{ \begin{array}{l}
AB \bot \left( {ACD} \right)\\
AB \subset \left( {ABC} \right)
\end{array} \right. \Rightarrow \left( {ABC} \right) \bot \left( {ACD} \right)\)

(theo định lí 1 trang 108)

\(\left\{ \begin{array}{l}
AB \bot \left( {ACD} \right)\\
AB \subset \left( {ABD} \right)
\end{array} \right. \Rightarrow \left( {ABD} \right) \bot \left( {ACD} \right)\)

Ta có: \(\left\{ \begin{array}{l}
AD \bot AC\\
AD \bot AB
\end{array} \right. \Rightarrow AD \bot \left( {ABC} \right)\)

\(\left\{ \begin{array}{l}
AD \bot \left( {ABC} \right)\\
AD \subset \left( {ABD} \right)
\end{array} \right. \Rightarrow \left( {ABD} \right) \bot \left( {ABC} \right)\)

HocTot.XYZ

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close