Câu hỏi 3 trang 57 SGK Hình học 11

Cho hai mặt phẳng α và β. Một mặt phẳng λ cắt α và β lần lượt theo các giao tuyến a và b...

Đề bài

Cho hai mặt phẳng \((\alpha)\) và \((\beta)\). Một mặt phẳng \((\lambda)\) cắt \((\alpha)\) và \((\beta)\) lần lượt theo các giao tuyến \(a\) và \(b\). Chứng minh rằng khi \(a\) và \(b\) cắt nhau tại \(I\) thì \(I\) là điểm chung của \((\alpha)\) và \((\beta)\). (h.2.32).

Video hướng dẫn giải

Lời giải chi tiết

\(a\) và \(b\) cắt nhau tại \(I\) nên:

\(I \in a \subset (a)\) (vì \(a\) là giao tuyến của \((\alpha)\) và \((\lambda)\))

\(I \in b \subset (\beta )\) ( vì \(b\) là giao tuyến của \((\beta)\) và \((\lambda)\))

Nên \(I\) là điểm chung của \((\alpha)\) và \((\beta)\).

 HocTot.XYZ

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close