Trả lời câu hỏi 4 trang 108 SGK Giải tích 12Cho tích phân... Video hướng dẫn giải Cho tích phân \(I = \int\limits_0^1 {{{(2x + 1)}^2}} dx\) LG a Tính \(I\) bằng cách khai triển \({\left( {2x{\rm{ }} + 1} \right)^2}\) Lời giải chi tiết: \(\displaystyle \eqalign{ LG b Đặt \(u = 2x + 1\). Biến đổi biểu thức \({\left( {2x{\rm{ }} + 1} \right)^2}dx\) thành \(g(u)du\). Lời giải chi tiết: Vì \(u = 2x + 1\) nên \(du = 2dx\). Ta có: \(\displaystyle{(2x + 1)^2}dx = {u^2}{{du} \over 2}\) LG c Tính \(\int\limits_{u(0)}^{u(1)} {g(u)du} \) và so sánh kết quả với \(I\) trong câu 1. Lời giải chi tiết: \(u(1) = 3; u(0) = 1\). Ta có: \(\displaystyle\int\limits_{u(0)}^{u(1)} {g(u)du = \int\limits_1^3 {{u^2}{{du} \over 2}} } = {{{u^3}} \over 6}|_1^3 = {{13} \over 3}\) Vậy \(\displaystyle I = {{13} \over 3}\) HocTot.XYZ
|