Câu hỏi 8 trang 77 SGK Hình học 10

Xét vị trí tương đối của đường thẳng Δ: x – 2y + 1 = 0 với mỗi đường thẳng sau:...

Đề bài

Xét vị trí tương đối của đường thẳng Δ: x – 2y + 1 = 0 với mỗi đường thẳng sau:

d1: -3x + 6y – 3 = 0;

d2: y = -2x;

d3: 2x + 5 = 4y.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Giải hệ phương trình, kết luận dựa vào số nghiệm:

+) Hệ có vô số nghiệm: hai đường thẳng trùng nhau

+) Hệ có nghiệm duy nhất: hai đường thẳng cắt nhau

+) Hệ vô nghiệm: Hai đường thẳng song song

Lời giải chi tiết

+ Xét Δ và d1, hệ phương trình: 

\(\left\{ \matrix{
x - 2y + 1 = 0 \hfill \cr
- 3x + 6y - 3 = 0 \hfill \cr} \right.\)

Phương trình trên có có vô số nghiệm (do các hệ số của chúng tỉ lệ nên Δ ≡ d1.

+ Xét Δ và d2, hệ phương trình: 

\(\left\{ \matrix{
x - 2y + 1 = 0 \hfill \cr
y = - 2x \hfill \cr} \right.\)

có nghiệm duy nhất là \(({{ - 1} \over 5};\,{2 \over 5})\)

⇒ Δ cắt d2 tại điểm M\(({{ - 1} \over 5};\,{2 \over 5})\)

+ Xét Δ và d2, hệ phương trình: 

\(\left\{ \matrix{
x - 2y + 1 = 0 \hfill \cr
2x + 5 = 4y \hfill \cr} \right.\) vô nghiệm

Vậy Δ // \(d_3\)

HocTot.XYZ

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close