Bài 2.48 trang 125 SBT giải tích 12

Giải bài 2.48 trang 125 sách bài tập giải tích 12. Giải các phương trình logarit sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình logarit sau:

LG a

\(\displaystyle \log x + \log {x^2} = \log 9x\)

Phương pháp giải:

Đặt điều kiện xác định và biến đổi phương trình về cùng cơ số.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Ta có \(\displaystyle PT \Leftrightarrow \log x + 2\log x = \log 9 + \log x\)

\(\begin{array}{l}
\Leftrightarrow 3\log x = \log {3^2} + \log x\\
\Leftrightarrow 3\log x - \log x = 2\log 3\\
\Leftrightarrow 2\log x = 2\log 3
\end{array}\)

\(\displaystyle  \Leftrightarrow \log x = \log 3 \Leftrightarrow x = 3\left( {TM} \right)\)

Vậy phương trình có nghiệm \(\displaystyle x = 3\).

LG b

\(\displaystyle \log {x^4} + \log 4x = 2 + \log {x^3}\)

Phương pháp giải:

Đặt điều kiện xác định và biến đổi phương trình về cùng cơ số.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Ta có \(\displaystyle PT \Leftrightarrow 4\log x + \log 4 + \log x\)\(\displaystyle  = \log 10^2 + 3\log x\)

\(\begin{array}{l}
\Leftrightarrow 5\log x - 3\log x = \log 100 - \log 4\\
\Leftrightarrow 2\log x = \log \frac{{100}}{4}\\
\Leftrightarrow 2\log x = \log 25 = \log {5^2}\\
\Leftrightarrow 2\log x = 2\log 5
\end{array}\)

\(\displaystyle  \Leftrightarrow \log x = \log 5 \Leftrightarrow x = 5\left( {TM} \right)\)

Vậy phương trình có nghiệm \(\displaystyle x = 5\).

LG c

\(\displaystyle {\log _4}{\rm{[}}(x + 2)(x + 3){\rm{]}} + {\log _4}\frac{{x - 2}}{{x + 3}} = 2\)

Phương pháp giải:

Đặt điều kiện xác định và biến đổi phương trình về cùng cơ số.

Lời giải chi tiết:

ĐK: \(\displaystyle \left\{ \begin{array}{l}(x + 2)(x + 3) > 0\\\frac{{x - 2}}{{x + 3}} > 0\end{array} \right.\)\(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x <  - 3\\x >  - 2\end{array} \right.\\\left[ \begin{array}{l}x <  - 3\\x > 2\end{array} \right.\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x <  - 3\\x > 2\end{array} \right.\)

Khi đó, phương trình đã cho tương đương với:

\(\displaystyle {\log _4}\left[ {(x + 2)(x + 3)\frac{{x - 2}}{{x + 3}}} \right] = {\log _4}16\) \( \Leftrightarrow \left( {x + 2} \right)\left( {x - 2} \right) = 16\)\(\displaystyle  \Leftrightarrow {x^2} - 4 = 16\) \( \Leftrightarrow {x^2} = 20\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x = 2\sqrt 5 \\x =  - 2\sqrt 5 \end{array} \right.\left( {TM} \right)\)

Vậy phương trình có nghiệm \(\displaystyle x =  \pm 2\sqrt 5 \).

LG d

\(\displaystyle {\log _{\sqrt 3 }}(x - 2){\log _5}x = 2{\log _3}(x - 2)\)

Phương pháp giải:

Biến đổi phương trình về dạng tích và sử dụng cách giải phương trình tích \(\displaystyle AB = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\).

Lời giải chi tiết:

ĐK: \(\displaystyle \left\{ \begin{array}{l}x > 2\\x > 0\end{array} \right. \Leftrightarrow x > 2\).

Ta có

\(\begin{array}{l}
PT \Leftrightarrow {\log _{{3^{\frac{1}{2}}}}}\left( {x - 2} \right){\log _5}x = 2{\log _3}\left( {x - 2} \right)\\
\Leftrightarrow {\rm{2lo}}{{\rm{g}}_3}\left( {x - 2} \right){\log _5}x - 2{\log _3}\left( {x - 2} \right) = 0
\end{array}\)

\(\displaystyle \Leftrightarrow 2{\log _3}(x - 2)({\log _5}x - 1) = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{\log _3}(x - 2) = 0\\{\log _5}x - 1 = 0\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x - 2 = 3^0\\\log_5x=1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x-2 = 1\\x = 5^1\end{array} \right.\left( {TM} \right)\)

\(\Leftrightarrow \left[ \begin{array}{l}
x = 3\\
x = 5
\end{array} \right.\)

Vậy phương trình có nghiệm \(\displaystyle x = 3\) và \(\displaystyle x = 5\).

HocTot.XYZ

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close