Bài 12 trang 147 SGK Giải tích 12Tính các tích phân sau bằng phương pháp đổi biến số Video hướng dẫn giải Tính các tích phân sau bằng phương pháp đổi biến số: LG a a) \(\displaystyle \int\limits_0^{{\pi \over 24}} {\tan ({\pi \over 4} - 4x)dx} \) (đặt \(u = \cos ({\pi \over 3} - 4x)\) ) Phương pháp giải: Đặt \(\displaystyle u = \cos ({\pi \over 3} - 4x)\) Lời giải chi tiết: Ta có: \(\displaystyle I=\int\limits_0^{\frac{\pi }{{24}}} {\tan \left( {\frac{\pi }{3} - 4x} \right)dx} \) \(\displaystyle = \int\limits_0^{\frac{\pi }{{24}}} {\frac{{\sin \left( {\frac{\pi }{3} - 4x} \right)}}{{\cos \left( {\frac{\pi }{3} - 4x} \right)}}dx} \) Đặt \(u = \cos \left( {\dfrac{\pi }{3} - 4x} \right)\) \( \Leftrightarrow du = 4\sin \left( {\dfrac{\pi }{3} - 4x} \right)dx\) Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = \frac{1}{2}\\x = \frac{\pi }{{24}} \Rightarrow u =\frac{{\sqrt 3 }}{2}\end{array} \right.\) Khi đó: \(\displaystyle I = \int\limits_{\frac{1}{2}}^{\frac{{\sqrt 3 }}{2}} {\frac{{du}}{{4u}}} = \left. {\frac{1}{4}\ln \left| u \right|} \right|_{\frac{1}{2}}^{\frac{{\sqrt 3 }}{2}} \) \(\displaystyle = \frac{1}{4}\left( {\ln \frac{{\sqrt 3 }}{2} - \ln \frac{1}{2}} \right) = \frac{1}{4}\ln \sqrt 3 \) LG b b) \(\displaystyle \int\limits_{{{\sqrt 3 } \over 5}}^{{3 \over 5}} {{{dx} \over {9 + 25{x^2}}}} \) (đặt \(\displaystyle x = {3 \over 5}\tan t\) ) Phương pháp giải: Đặt \(\displaystyle x = {3 \over 5}\tan t\) Lời giải chi tiết: Đặt \(x = \dfrac{3}{5}\tan t \) \( \displaystyle \Leftrightarrow dx = \frac{3}{{5{{\cos }^2}t}}dt = \frac{3}{5}\left( {{{\tan }^2}t + 1} \right)dt\) Đổi cận: \(\left\{ \begin{array}{l}x = \frac{{\sqrt 3 }}{5} \Rightarrow t = \frac{\pi }{6}\\x = \frac{3}{5} \Rightarrow t = \frac{\pi }{4}\end{array} \right.\) \(\displaystyle I = \int\limits_{\frac{{\sqrt 3 }}{5}}^{\frac{3}{5}} {\frac{{dx}}{{9 + 25{x^2}}}} \) \(\displaystyle = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{{3\left( {{{\tan }^2}t + 1} \right)dt}}{{5\left( {9 + 25.\frac{9}{{25}}{{\tan }^2}t} \right)}}} \) \(\displaystyle I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{{3\left( {{{\tan }^2}t + 1} \right)}}{{5.9\left( {{{\tan }^2}t + 1} \right)}}dt} \) \(\displaystyle = \frac{1}{{15}}\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {dt} = \left. {\frac{t}{{15}}} \right|_{\frac{\pi }{6}}^{\frac{\pi }{4}} = \frac{\pi }{{180}}\) LG c c) \(\displaystyle \int\limits_0^{{\pi \over 2}} {{{\sin }^3}} x{\cos ^4}xdx\) (đặt \(u = \cos x\)) Phương pháp giải: Đặt \(u = \cos x\) Lời giải chi tiết: Ta có: \(I = \int\limits_0^{\frac{\pi }{2}} {{{\sin }^3}x{{\cos }^4}xdx} \) \(= \int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right){{\cos }^4}x\sin xdx} \) Đặt \(u = \cos x \Rightarrow du = - \sin xdx\) Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Leftrightarrow u = 1\\x = \frac{\pi }{2} \Rightarrow u = 0\end{array} \right.\) \(\displaystyle \Rightarrow I = - \int\limits_1^0 {\left( {1 - {u^2}} \right){u^4}du} \) \(= \int\limits_0^1 {\left( {{u^4} - {u^6}} \right)du}\) \(\displaystyle I = \left. {\left( {\frac{{{u^5}}}{5} - \frac{{{u^7}}}{7}} \right)} \right|_0^1 = \frac{2}{{35}}\) LG d d) \(\displaystyle \int\limits_{{{ - \pi } \over 4}}^{{\pi \over 4}} {{{\sqrt {1 + \tan x} } \over {{{\cos }^2}x}}} dx\) (đặt \(u = \sqrt {1 + \tan x} \) ) Phương pháp giải: Đặt \(u = \sqrt {1 + \tan x} \) Lời giải chi tiết: Đặt \(u = \sqrt {1 + \tan x} \Leftrightarrow {u^2} = 1 + \tan x \) \(\displaystyle \Leftrightarrow 2udu = \frac{1}{{{{\cos }^2}x}}dx\) Đổi cận: \(\left\{ \begin{array}{l}x = - \frac{\pi }{4} \Rightarrow u = 0\\x = \frac{\pi }{4} \Rightarrow u = \sqrt 2 \end{array} \right.\) \( \Rightarrow I = \int\limits_0^{\sqrt 2 } {u.2udu} = 2\int\limits_0^{\sqrt 2 } {{u^2}du} \) \(\displaystyle = 2\left. {\frac{{{u^3}}}{3}} \right|_0^{\sqrt 2 } = \frac{2}{3}.2\sqrt 2 = \frac{{4\sqrt 2 }}{3}\) HocTot.XYZ
|