Bài 17 trang 28 Hình học 12 Nâng cao

Tính thể tích của khối hộp ABCD.A'B'C'D', biết rằng AA'B'D' là khối tứ diện đều cạnh a.

Đề bài

Tính thể tích của khối hộp \(ABCD.A'B'C'D'\), biết rằng \(AA'B'D'\) là khối tứ diện đều cạnh \(a\).

Phương pháp giải - Xem chi tiết

- Tứ diện đều có hình chiếu của đỉnh xuống đáy chính là tâm đáy.

- Sử dụng công thức tính thể tích lăng trụ V=B.h.

Lời giải chi tiết

\(AA’B’D’\) là tứ diện đều nên đường cao \(AH\) có \(H\) là tâm của tam giác đều \(A’B’D’\) cạnh \(a\).

Mà \(ABCD)//(A'B'C'D') nên

h=d((ABCD),(A'B'C'D'))=d(A,(A'B'C'D')).

Do đó:

\(\eqalign{
& A'H = {2 \over 3}A'O' = {2 \over 3}{{a\sqrt 3 } \over 2} = {{a\sqrt 3 } \over 3} \cr 
& \Rightarrow A{H^2} = AA{'^2} - A'{H^2} \cr &= {a^2} - {{{a^2}} \over 3} = {{2{a^2}} \over 3} \cr 
& \Rightarrow AH = a\sqrt {{2 \over 3}} = {{a\sqrt 6 } \over 3} \cr} \)

Diện tích tam giác đều \(A’B’D’\) là: \({S_{A'B'D'}}= \frac{1}{2}A'B'.A'D'\sin {60^0} = {{{a^2}\sqrt 3 } \over 4}\)
Diện tích hình thoi \(A’B’C’D’\): \({S_{A'B'C'D'}} = 2{S_{A'B'D'}} = {{{a^2}\sqrt 3 } \over 2}\)
Vậy thể tích khối hộp đã cho là:

\(V = B.h \) \(= {{{a^2}\sqrt 3 } \over 2}.{{a\sqrt 6 } \over 3} = {{{a^3}\sqrt 2 } \over 2}\)

HocTot.XYZ

  • Bài 18 trang 28 SGK Hình học 12 Nâng cao

    Tính thể tích của khối lăng trụ n-giác đều có tất cả các cạnh đều bằng a.

  • Bài 19 trang 28 SGK Hình học 12 Nâng cao

    Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại A, AC = b. . Đường thẳng BC’ tạo với mp(AA’C’C) một góc . a) Tính độ dài đoạn thẳng AC. b) Tính thể tích khối lăng trụ đã cho.

  • Bài 20 trang 28 SGK Hình học 12 Nâng cao

    Cho khối lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh a, điểm A' cách đều ba điểm A, B, c, cạnh bên AA' tạo với mặt phẳng đáy một góc 60°. a) Tính thể tích của khối lăng trụ đó. b) Chứng minh rằng mặt bên BCCB' là một hình chữ nhật. c) Tính tổng diện tích các mặt bên của hình lăng trụ ABC.A'B'C (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).

  • Bài 21 trang 28 SGK Hình học 12 Nâng cao

    Cho điểm M nằm trong hình tứ diện đều ABCD. Chứng minh rằng tổng các khoảng cách từ M tới bốn mặt của hình tứ diện là một số không phụ thuộc vào vị trí của điểm M. Tổng đó bằng bao nhiêu nếu cạnh của tứ diện đều bằng a ?

  • Bài 22 trang 28 SGK Hình học 12 Nâng cao

    Cho khối lăng trụ tam giác đều ABC.A'B’C. Gọi M là trung điểm của AA’. Mặt phẳng đi qua M, B’, C chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close