hoctot.xyz

  • Lớp 12 Học ngay
  • Lớp 11 Học ngay
  • Lớp 10 Học ngay
  • Lớp 9 Học ngay
  • Lớp 8 Học ngay
  • Lớp 7 Học ngay
  • Lớp 6 Học ngay
  • Lớp 5 Học ngay
  • Lớp 4 Học ngay
  • Lớp 3 Học ngay
  • Lớp 2 Học ngay
  • Lớp 1 Học ngay
SBT Toán 8 - giải SBT Toán 8 - Chân trời sáng tạo | Bài 2. Đường trung bình của tam giác - SBT Toán 8 CTST
Bình chọn:
4.3 trên 43 phiếu
  • Bài 1 trang 45 sách bài tập toán 8 - Chân trời sáng tạo

    Cho tam giác nhọn ABC có M, N lần lượt là trung điểm của AB, AC. a) Chứng minh tứ giác BMNC là hình thang.

    Xem lời giải
  • Bài 2 trang 45 sách bài tập toán 8 - Chân trời sáng tạo

    Cho tam giác nhọn ABC, kẻ trung tuyến AM \(\left( {M \in BC} \right)\). Gọi I là trung điểm của AM, đường thẳng CI cắt AB tại E. Từ M kẻ đường thẳng song song với CE cắt AB tại F. Chứng minh:

    Xem lời giải
  • Bài 3 trang 45 sách bài tập toán 8 - Chân trời sáng tạo

    Cho tam giác ABC, hai đường trung tuyến BM và CN cắt nhau tại G \(\left( {M \in AC,N \in AB} \right)\). Gọi D, E lần lượt là trung điểm của GB, GC. Chứng minh:

    Xem lời giải
  • Bài 4 trang 45 sách bài tập toán 8 - Chân trời sáng tạo

    Cho hình thang ABCD (AB//CD). Gọi M, N, P, Q lần lượt là trung điểm của AD, BC, BD, AC. Chứng minh M, N, P, Q thẳng hàng.

    Xem lời giải
  • Bài 5 trang 45 sách bài tập toán 8 - Chân trời sáng tạo

    Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC. a) Chứng minh tứ giác AMNB là hình thang.

    Xem lời giải
  • Bài 6 trang 45 sách bài tập toán 8 - Chân trời sáng tạo

    Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM//QO\(\left( {M \in OP} \right)\), IN//PO \(\left( {N \in QO} \right)\). Chứng minh:

    Xem lời giải

  • Trang chủ
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Lớp 2
  • Lớp 1

Tiện ích | Blog

Nội dung từ Loigiaihay.Com