Bài 28 trang 90 SGK Đại số và Giải tích 12 Nâng cao

Tính

Đề bài

Tính \({\log _{{1 \over 5}}}125;{\log _{0,5}}{1 \over 2};{\log _{{1 \over 4}}}{1 \over {64}};{\log _{{1 \over 6}}}36.\)

Phương pháp giải - Xem chi tiết

Sử dụng các công thức:

\(\begin{array}{l}
{\log _a}{b^\alpha } = \alpha {\log _a}b\\
{\log _{{a^\alpha }}}b = \frac{1}{\alpha }{\log _a}b
\end{array}\)

Đặc biệt: \({\log _a}{a^\alpha } = \alpha \)

Lời giải chi tiết

\({\log _{{1 \over 5}}}125 = {\log _{{5^{ - 1}}}}125 \)

\(= \frac{1}{{ - 1}}{\log _5}125 =  - {\log _5}{5^3} \)

\(=  - 3{\log _5}5 =  - 3\)

\({\log _{0,5}}{1 \over 2} = {\log _{0,5}}0,5 = 1;\)

\({\log _{{1 \over 4}}}{1 \over {64}} = {\log _{{1 \over 4}}}{\left( {{1 \over 4}} \right)^3} = 3;\)

\(\begin{array}{l}
{\log _{\frac{1}{6}}}36 = {\log _{{6^{ - 1}}}}36\\
= \frac{1}{{ - 1}}{\log _6}36 = - {\log _6}\left( {{6^2}} \right)\\
= - 2{\log _6}6 = - 2
\end{array}\)

HocTot.XYZ

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close