Giải bài 3 trang 18 SGK Giải tích 12

Chứng minh rằng

Đề bài

Chứng minh rằng hàm số \(y=\sqrt{\left | x \right |}\) không có đạo hàm tại \(x = 0\) nhưng vẫn đạt cực tiểu tại điểm đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Tính giới hạn trái, giới hạn phải của \( \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) khi \(x \to x_0\), từ đó suy ra không tồn tại đạo hàm tại \(x=x_0\).

- Chứng minh \(f(x)\ge f(0)\) với mọi \(x\in R\).

Lời giải chi tiết

Ta có:

\(\begin{array}{l}y = f\left( x \right) = \sqrt {\left| x \right|} = \left\{ \begin{array}{l}\sqrt x \,\,khi\,\,x \ge 0\\\sqrt { - x} \,\,khi\,\,x < 0\end{array} \right.\\
\mathop {\lim }\limits_{{0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt x }}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{1}{{\sqrt x }} = + \infty \\
\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt { - x} }}{x} \\= \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt { - x} }}{{ - {{\left( {\sqrt { - x} } \right)}^2}}} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ - 1}}{{\sqrt { - x} }} = - \infty \\
\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \ne \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}
\end{array}\)

\(\Rightarrow\) Không tồn tại đạo hàm của hàm số đã cho tại \(x = 0\).

Dễ thấy \(f(x)=\sqrt {\left| x \right|}\ge 0\) với mọi \(x\in R\) và \(f(0)=0\) nên \(x=0\) chính là điểm cực tiểu của hàm số.

HocTot.XYZ

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close