Bài 4 trang 92 SGK Hình học 11

Cho hình tứ diện ABCD...

Đề bài

Cho hình tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(CD\). Chứng minh rằng: 

a) \(\overrightarrow{MN}=\dfrac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right );\)

b) \(\overrightarrow{MN}=\dfrac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right ).\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc ba điểm.

Lời giải chi tiết

a) \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{DN}.\)

\(\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}.\) 

Cộng từng vế ta được:

\(\begin{array}{l}
2\overrightarrow {MN}  \\
= \left( {\overrightarrow {MA} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {AD} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {DN} + \overrightarrow {CN} } \right)
\end{array}\)

Do \(M,N\) là trung điểm của \(AB,CD\) nên \(\overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow 0 \) và \(\overrightarrow {DN}  + \overrightarrow {CN}  = \overrightarrow {DN}  + \overrightarrow {ND}  = \overrightarrow 0 \)

\(\Rightarrow 2\overrightarrow {MN}  = \overrightarrow 0  + \left( {\overrightarrow {AD}  + \overrightarrow {BC} } \right) + \overrightarrow 0  \) \(= \overrightarrow {AD}  + \overrightarrow {BC} \)

\(\Rightarrow \overrightarrow{MN}=\dfrac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right )\)

b)

\(\eqalign{
& \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AC} + \overrightarrow {CN} \cr
& \overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BD} + \overrightarrow {DN} \cr} \)

Cộng từng vế ta được: 

\(\begin{array}{l}
2\overrightarrow {MN} \\
= \left( {\overrightarrow {MA} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CN} + \overrightarrow {DN} } \right)\\
= \overrightarrow 0 + \left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) + \overrightarrow 0 \\
= \overrightarrow {AC} + \overrightarrow {BD}
\end{array}\)

\(\Rightarrow \overrightarrow{MN}=\dfrac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right ).\)

HocTot.XYZ

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close