Giải bài 7 trang 39 SGK Hình học lớp 12

Một hình trụ có bán kính r và chiều cao h = r√3.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Một hình trụ có bán kính \(r\) và chiều cao \(h = r\sqrt3\).

LG a

a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.

Phương pháp giải:

Áp dụng công thức: \({S_{xq}} = 2\pi rh,\,\,{S_{tp}} = 2\pi rh + \pi {r^2}\) với \(r;h\) lần lượt là bán kính đáy và độ dài đường cao của hình trụ.

Lời giải chi tiết:

Theo công thức ta có:

\(S_{xq} = 2πrh = 2\sqrt3 πr^2\) 

\(S_{tp} = 2πrh + 2πr^2 =  2\sqrt3 πr^2 + 2 πr^2 \)

\(= 2(\sqrt3 + 1)πr^2\)  ( đơn vị thể tích)

LG b

b) Tính thể tích khối trụ tạo nên bởi hình trụ đã cho.

Phương pháp giải:

Áp dụng công thức: \(V = \pi {r^2}h\).

Lời giải chi tiết:

\(V\)trụ = \(πR^2h = \sqrt3 π r^3\)

LG c

c) Cho hai điểm \(A\) và \(B\) lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng \(AB\) và trục của hình trụ bằng \(30^0\). Tính khoảng cách giữa đường thẳng \(AB\) và trục của hình trụ.

Phương pháp giải:

+) Giả sử trục của hình trụ là \(O_1O_2\) và \(A\) nằm trên đường tròn tâm \(O_1\), \(B\) nằm trên đường tròn tâm \(O_2\). Kẻ \(BB_1\) // \({O_1}{O_2}\) \( \Rightarrow \widehat {\left( {AB;{O_1}{O_2}} \right)} = \widehat {\left( {AB;B{B_1}} \right)} = \widehat {AB{B_1}}\).

+) Xác định khoảng cách giữa AB và \({O_1}{O_2}\) bằng cách xác định đường vuông góc chung giữa hai đường thẳng đó.

Lời giải chi tiết:

Giả sử trục của hình trụ là \(O_1O_2\) và \(A\) nằm trên đường tròn tâm \(O_1\), \(B\) nằm trên đường tròn tâm \(O_2\); \(I\) là trung điểm của \(O_1O_2\) , \(J\) là trung điểm của \(AB\).

Ta chứng minh \(IJ\) là đường vuông góc chung của \(O_1O_2\)  và \(AB\).

Hạ \(BB_1\) vuông góc với đáy, \(J_1\) là hình chiếu vuông góc của \(J\) xuống đáy.

Dễ thấy \(J_1\) là trung điểm của \(AB_1\) (định lí đường trung bình của tam giác).

Ta có: \(\left\{ \begin{array}{l}{O_1}{J_1} \bot A{B_1}\\{O_1}{J_1} \bot B{B_1}\end{array} \right. \Rightarrow {O_1}{J_1} \bot \left( {AB{B_1}} \right)\).

Mà \(IJ//{O_1}{J_1} \Rightarrow IJ \bot \left( {AB{B_1}} \right)\) \( \Rightarrow IJ \bot AB\).

\(\left\{ \begin{array}{l}IJ//{O_1}{J_1}\\{O_1}{O_2} \bot {O_1}{J_1}\end{array} \right. \Rightarrow IJ \bot {O_1}{O_2}\).

Vậy IJ là đường vuông góc chung của \(O_1O_2\)  và \(AB\) \( \Rightarrow d\left( {AB;{O_1}{O_2}} \right) = IJ\)

Ta có: \(BB_1\) // \({O_1}{O_2}\) \( \Rightarrow \widehat {\left( {AB;{O_1}{O_2}} \right)} = \widehat {\left( {AB;B{B_1}} \right)} = \widehat {AB{B_1}}\).

do vậy: \(AB_1 = BB_1.tan 30^0\) = \( \frac{\sqrt{3}}{3}h = r\).

Xét tam giác vuông \(O_1J_1A\) vuông tại \(J_1\) ta có: 

\( O_{1}J^{2}_{1}\) = \( O_{1}A^{2}\) - \( AJ^{2}_{1} =\) \( r^{2} - {\left( {{r \over 2}} \right)^2}=\) \( \frac{3}{4}r^{2}\) \( \Rightarrow {O_1}{J_1} = \frac{{r\sqrt 3 }}{2}\)

Vậy khoảng cách giữa \(AB\) và \(O_1O_2\) là: \( \frac{\sqrt{3}}{2}r\).

HocTot.XYZ

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close