Nội dung từ Loigiaihay.Com
Hình vuông ABCD được chia thành hai hình vuông và hai hình chữ nhật như Hình 3.
a) Tính độ dài đường chéo của hai hình vuông AMIN và CEIF.
b) Tính độ dài đường chéo của hai hình vuông ABCD theo hai cách khác nhau.
- Tính độ dài đường chéo AMIN bằng cách dựa vào định lý Pythagore vào tam giác vuông AMI và tính độ dài đường chéo EIFC bằng cách dựa vào định lý Pythagore vào tam giác vuông IFC.
- C1: Từ phần a suy ra độ dài đường chéo ABCD = độ dài đường chéo AMNI + độ dài đường chéo IFCE.
- C2: Tính độ dài cạnh AB và BC suy ra đường chéo hình vuông ABCD bằng cách áp dụng định lý Pythagore vào tam giác vuông ABC.
a) Xét tam giác vuông AMI có AI = \(\sqrt {{2^2} + {2^2}} = 2\sqrt 2 \)cm
Vậy độ dài đường chéo AMIN bằng \(2\sqrt 2 \) cm
Xét tam giác vuông IFC có IC = \(\sqrt {{3^2} + {3^2}} = 3\sqrt 2 \)cm
Vậy độ dài đường chéo AMIN bằng \(3\sqrt 2 \) cm.
b) Cách 1:
Ta có: độ dài đường chéo ABCD = độ dài đường chéo AMNI + độ dài đường chéo IFCE = \(2\sqrt 2 \) + \(3\sqrt 2 \) = \(5\sqrt 2 \) cm.
Cách 2:
Độ dài cạnh AB là : 2 + 3 = 5 cm
Độ dài cạnh BC là : 2 + 3 = 5 cm
Xét tam giác vuông ABC có: AC = \(\sqrt {A{B^2} + B{C^2}} = \sqrt {{5^2} + {5^2}} = 5\sqrt 2 \) cm.
Vậy độ dài đường chéo của hình vuông ABCD là \(5\sqrt 2 \) cm.
Các bài tập cùng chuyên đề
Bài 1 :
Giá trị của biểu thức \(\sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}} - \sqrt {6 - 2\sqrt 5 } \) là:
$5-2\sqrt 5$
$4$
$2+2\sqrt 5$
$1$
Bài 2 :
Rút gọn biểu thức \(5\sqrt a + 2\sqrt {\dfrac{a}{4}} - a\sqrt {\dfrac{4}{a}} - \sqrt {25a} \) với \(a > 0\) ta được
$\sqrt a $
$4\sqrt a $
$2\sqrt a $
$ - \sqrt a $
Bài 3 :
Rút gọn biểu thức \(2\sqrt a - \sqrt {9{a^3}} + {a^2}\sqrt {\dfrac{{16}}{a}} + \dfrac{2}{{{a^2}}}\sqrt {36{a^5}} \) với $a > 0$ ta được
$14\sqrt a + a\sqrt a $
$14\sqrt a - a\sqrt a $
$14\sqrt a + 2a\sqrt a $
$20\sqrt a - 2a\sqrt a $
Bài 4 :
Đẳng thức nào dưới đây là đúng?
$\dfrac{{a - b}}{{{b^2}}}\sqrt {\dfrac{{{a^2}{b^4}}}{{{a^2} - 2ab + {b^2}}}} = a$ với $a - b > 0,b \ne 0$
$\dfrac{{a - b}}{{{b^2}}}\sqrt {\dfrac{{{a^2}{b^4}}}{{{a^2} - 2ab + {b^2}}}} = \left| a \right|$ với $a - b > 0,b \ne 0$
$\dfrac{{a - b}}{{{b^2}}}\sqrt {\dfrac{{{a^2}{b^4}}}{{{a^2} - 2ab + {b^2}}}} = ab$ với $a - b > 0,b \ne 0$
$\dfrac{{a - b}}{{{b^2}}}\sqrt {\dfrac{{{a^2}{b^4}}}{{{a^2} - 2ab + {b^2}}}} = a - b$ với $a - b > 0,b \ne 0$
Bài 5 :
Chọn khẳng định đúng?
$\left( {\dfrac{{2\sqrt 3 - \sqrt 6 }}{{\sqrt 8 - 2}} - \dfrac{{\sqrt {216} }}{3}} \right).\left( {\dfrac{{ - a}}{{\sqrt 6 }}} \right) = \dfrac{{ - 3a}}{2}$
$\left( {\dfrac{{2\sqrt 3 - \sqrt 6 }}{{\sqrt 8 - 2}} - \dfrac{{\sqrt {216} }}{3}} \right).\left( {\dfrac{{ - a}}{{\sqrt 6 }}} \right) = \dfrac{{3a}}{2}$
$\left( {\dfrac{{2\sqrt 3 - \sqrt 6 }}{{\sqrt 8 - 2}} - \dfrac{{\sqrt {216} }}{3}} \right).\left( {\dfrac{{ - a}}{{\sqrt 6 }}} \right) = \dfrac{{ - a}}{2}$
$\left( {\dfrac{{2\sqrt 3 - \sqrt 6 }}{{\sqrt 8 - 2}} - \dfrac{{\sqrt {216} }}{3}} \right).\left( {\dfrac{{ - a}}{{\sqrt 6 }}} \right) = \dfrac{a}{2}$
Bài 6 :
Cho $P = \dfrac{2}{{\sqrt x + 1}}$.
Có bao nhiêu giá trị $x \in \mathbb{Z}$ để $P \in \mathbb{Z}$ ?
$1$
$2$
$0$
$4$
Bài 7 :
Rút gọn biểu thức \(3\sqrt {8a} + \dfrac{1}{4}\sqrt {\dfrac{{32a}}{{25}}} - \dfrac{a}{{\sqrt 3 }}.\sqrt {\dfrac{3}{{2a}}} - \sqrt {2a} \) với \(a > 0\) ta được:
\(\dfrac{{47}}{{10}}\sqrt a \)
\(\dfrac{{21}}{5}\sqrt a \)
\(\dfrac{{47}}{{10}}\sqrt {2a} \)
\(\dfrac{{47}}{5}\sqrt {2a} \)
Bài 8 :
Giá trị của biểu thức \(\sqrt {{{\left( {\sqrt 2 + \sqrt 5 } \right)}^2}} - \sqrt {7 - 2\sqrt {10} } \).
\(2\sqrt 2 \)
\(0\)
\(\sqrt 2 \)
\(2\sqrt 5 \)
Bài 9 :
Giá trị của biểu thức \(\sqrt {17 - 12\sqrt 2 } + \sqrt {9 + 4\sqrt 2 } \).
\(3 + 4\sqrt 2 \)
\(4\)
\(2\)
\(4\sqrt 2 \)
Bài 10 :
Rút gọn biểu thức \(\left( {\dfrac{1}{2}\sqrt {\dfrac{a}{2}} - \dfrac{3}{2}\sqrt {2a} + \dfrac{4}{5}\sqrt {200a} } \right):\dfrac{1}{8}\) ta được:
\(66\sqrt {2a} \)
\(52\sqrt {2a} \)
\(54\sqrt a \)
\(54\sqrt {2a} \)
Bài 11 :
Với \(a,b > 0\), đẳng thức nào dưới đây là đúng?
\(\dfrac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }} + \dfrac{{a - b}}{{\sqrt a + \sqrt b }} = 2\sqrt a \)
\(\dfrac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }} + \dfrac{{a - b}}{{\sqrt a + \sqrt b }} = \sqrt a \)
\(\dfrac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }} + \dfrac{{a - b}}{{\sqrt a + \sqrt b }} = 2\)
\(\dfrac{{a\sqrt b + b\sqrt a }}{{\sqrt {ab} }} + \dfrac{{a - b}}{{\sqrt a + \sqrt b }} = 2\sqrt b \)
Bài 12 :
Chọn khẳng định đúng?
\(\left( {\dfrac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{a\left( {\sqrt 7 - \sqrt 5 } \right)}} = 2a\)
\(\left( {\dfrac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{a\left( {\sqrt 7 - \sqrt 5 } \right)}} = \dfrac{2}{a}\)
\(\left( {\dfrac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{a\left( {\sqrt 7 - \sqrt 5 } \right)}} = - 2a\)
\(\left( {\dfrac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{a\left( {\sqrt 7 - \sqrt 5 } \right)}} = - \dfrac{a}{2}\)
Bài 13 :
Cho \(P = \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}}\) với \(x \ge 0;x \ne 4\). Có bao nhiêu giá trị \(x \in \mathbb{Z}\) để \(P \in \mathbb{Z}\).
\(3\)
\(2\)
\(0\)
\(4\)
Bài 14 :
Rút gọn biểu thức \(A = \sqrt {1 + \dfrac{1}{{{a^2}}} + \dfrac{1}{{{{\left( {a + 1} \right)}^2}}}} \) với \(\left( {a > 0} \right)\)
\(A = \dfrac{{{a^2} + a + 1}}{{a\left( {a - 1} \right)}}\)
\(A = \dfrac{{{a^2} + a + 1}}{{a\left( {a + 1} \right)}}\)
\(A = \dfrac{{{a^2} - a + 1}}{{a\left( {a - 1} \right)}}\)
\(A = \dfrac{{{a^2} - a - 1}}{{a\left( {a - 1} \right)}}\)
Bài 15 :
Rút gọn biểu thức: \(T = \dfrac{{\left( {\sqrt {2a} - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a - 2}}\left( {a > 0;a \ne 4} \right)\)
Bài 16 :
Rút gọn biểu thức \(A = \dfrac{{x + \sqrt x + 1}}{{x + \sqrt x - 2}} + \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 2}}\) với \(x \ge 0,\,\,x \ne 1.\)
\(A = \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}}\)
\(A = \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}}\)
\(A = \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}}\)
\(A = \dfrac{{\sqrt x - 1}}{{\sqrt x + 2}}\)
Bài 17 :
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {3 - \sqrt {10} } \right)}^2}} \)
b) \(2\sqrt {{a^2}} + 4a\) với a < 0
c) \(\sqrt {{a^2}} + \sqrt {{{\left( {3 - a} \right)}^2}} \) với 0 < a < 3
Bài 18 :
Rút gọn các biểu thức sau:
a) \(\sqrt {20} - \sqrt 5 \)
b) \(\sqrt {32} - \sqrt {18} + \frac{4}{{\sqrt 2 }}\)
c) \(\left( {2 - \sqrt {10} } \right)\left( {\sqrt 2 - \sqrt 5 } \right)\)
Bài 19 :
Rút gọn các biểu thức sau:
a) \(\frac{2}{3}\sqrt {9{x^3}} + 4x\sqrt {\frac{x}{4}} - {x^2}\sqrt {\frac{1}{x}} \) với x > 0
b) \(\frac{{{a^2} - 5}}{{a + \sqrt {15} }}\) với a \( \ne - \sqrt 5 \)
Bài 20 :
Rút gọn các biểu thức sau:
a) \(2\sqrt 3 - \sqrt {27} \)
b) \(\sqrt {45} - \sqrt {20} + \sqrt 5 \)
c) \(\sqrt {64a} - \sqrt {18} - a\sqrt {\frac{9}{a}} + \sqrt {50} \) với a > 0
Bài 21 :
Tính
a) \(\left( {\sqrt {\frac{4}{3}} + \sqrt 3 } \right)\sqrt 6 \)
b) \(\sqrt {18} :\sqrt 6 + \sqrt 8 .\sqrt {\frac{{27}}{2}} \)
c) \({\left( {1 - 2\sqrt 5 } \right)^2}\)
Bài 22 :
Chứng minh rằng:
a) \(\frac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\frac{1}{{\sqrt a + \sqrt b }} = a - b\) với a > 0; b > 0
b) \(\left( {1 + \frac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a - 1}}} \right) = 1 - a\) với a \( \ge \) 0 và a \( \ne \)1
Bài 23 :
Tam giác ABC được vẽ trên ô vuông như Hình 4. Tính diện tích và chu vi của tam giác ABC
Bài 24 :
Một vườn hoa gồm ba thửa hình vuông X, Y, Z lần lượt có diện tích như Hình 5. Tính chu vi của vườn hoa đó.
Bài 25 :
Cho a = \(2\sqrt 3 + \sqrt 2 \), b = \(3\sqrt 2 - 2\sqrt 3 \). Rút gọn biểu thức \(\sqrt 3 a - \sqrt 2 b\), ta có kết quả
A. \(3\sqrt 6 \)
B. \( - \sqrt 6 \)
C. \(6\sqrt 3 \)
D. \(12 - \sqrt 6 \)
Bài 26 :
Rút gọn biểu thức \(\frac{1}{{2\sqrt a + \sqrt 2 }} - \frac{1}{{2\sqrt a - \sqrt 2 }}\) với \(a \ge 0\), \(a \ne \frac{1}{2}\), ta có kết quả
A. \(\frac{{\sqrt 2 }}{{1 - 2a}}\)
B. \(\frac{{\sqrt 2 }}{{2a - 1}}\)
C. \(\frac{{\sqrt a }}{{2a - 1}}\)
D. \(\frac{{\sqrt 2 }}{{1 - a}}\)
Bài 27 :
Tính \(\frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} - \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}\).
Bài 28 :
Cho hình hộp chữ nhật có chiều dài \(\sqrt {12} \)cm, chiều rộng\(\sqrt 8 \)cm, chiều cao \(\sqrt 6 \) như Hình 2.
a) Tính thể tích của hình hộp chữ nhật đó.
b) Tính diện tích xung quanh của hình hộp chữ nhật đó.
Bài 29 :
Hãy chép lại và hoàn thành Bảng 3.2. Em có nhận xét gì về giá trị của \(\sqrt {\left( {x + 1} \right)\left( {x + 3} \right)} \) và \(\sqrt {x + 1} .\sqrt {x + 3} \)?
Bài 30 :
Rút gọn rồi tính giá trị các biểu thức sau:
a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \);
b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a = - 2,b = - \sqrt 3 \);
c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a = - 3,b = \sqrt 5 \);
d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x = - 3,y = \sqrt 5 \).