Nội dung từ Loigiaihay.Com
Với hai số a,b bất kì, thực hiện phép tính
\(\left( {a + b} \right){\left( {a + b} \right)^2}\)
Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^3}\) và \({a^3} + 3{a^2}b + 3a{b^2} + {b^3}\).
Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.
Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
\(\begin{array}{l}\left( {a + b} \right){\left( {a + b} \right)^2} = \left( {a + b} \right).\left( {{a^2} + 2ab + {b^2}} \right) = a.{a^2} + a.2ab + a.{b^2} + b.{a^2} + b.2ab + b.{b^2}\\ = {a^3} + 2{a^2}b + a{b^2} + {a^2}b + 2a{b^2} + {b^3}\\ = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\end{array}\)
Các bài tập cùng chuyên đề
Bài 1 :
1. Khai triển:
a) \({\left( {x + 3} \right)^3}\)
b) \({\left( {x + 2y} \right)^3}\)
2. Rút gọn biểu thức \({\left( {2x + y} \right)^3} - 8{x^3} - {y^3}\)
Bài 2 :
Viết biểu thức \({x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\) dưới dạng lập phương của một tổng.
Bài 3 :
Chứng minh rằng \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right)\).
Áp dụng, tính \({a^3} + {b^3}\) biết \(a + b = 4\) và \(ab = 3\).
Bài 4 :
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức \(S = 200{\left( {1 + x} \right)^3}\) (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất là x=5,5%.
b) Khai triển S thành đa thức theo x và xác định bậc của đa thức.
Bài 5 :
Cho \(a\) và \(b\)là hai số thực bất kì:
Bài 6 :
Tính:
a)\({\left( {2a + 3} \right)^3}\)
b)\({\left( {u + 4v} \right)^3}\)
Bài 7 :
a) Viết biểu thức \({x^3} + 3{x^2} + 3x + 1\) dưới dạng lập phương của một tổng.
b) Sử dụng kết quả của câu a, hãy tính giá trị của biểu thức sau tại \(x = 19:\)
\({x^3} + 3{x^2} + 3x + 1.\)
Bài 8 :
Một hình lập phương có thể tích là \(8{a^3} + 36{a^2}b + 54a{b^2} + 27{b^3}\) với \(a > 0\), \(b > 0\). Tính độ dài cạnh của hình lập phương theo a,b.
Bài 9 :
Biết số tự nhiên a chia 6 dư 5. Chứng minh \({a^3}\) chia 6 dư 5.
Bài 10 :
Khai triển \({\left( {2x + 1} \right)^3}\) được biểu thức:
A. \(8{x^3}\; + 12{x^2}\; + 6x + 1\).
B. \(8{x^3}\; + 6{x^2}\; + 12x + 1\).
C. \(8{x^3}\;-12{x^2}\; + 6x-1\).
D. \(8{x^3}\;-6{x^2}\; + 12x-1\).
Bài 11 :
Chứng minh rằng \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right).\)
Áp dụng, tính \({a^3} + {b^3}\) nếu \(a + b = 4\) và \(ab = 3\).
Bài 12 :
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức
\(S\; = \;200.{\left( {1 + x} \right)^3}\) (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất là \(x = 5,5\% \).
b) Khai triển S thành đa thức theo x và xác định bậc của đa thức.
Bài 13 :
Để biểu thức \({x^3} + 6{x^2} + 12x + m\) là lập phương của một tổng thì giá trị của m là:
4.
6.
16.
Bài 14 :
Tính giá trị biểu thức \(A = 8{x^3} + 12{x^2} + 6x + 1\) tại \(x = 9,5\) .
400
4000
8000
Bài 15 :
Cho ba số thực \(a, b, c\) khác 2 và thỏa mãn \(a + b + c = 6\). Tính giá trị của biểu thức: \(M = \frac{{{{\left( {a - 2} \right)}^2}}}{{\left( {b - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {b - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {c - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {b - 2} \right)}}\).
Bài 16 :
Các đơn thức điền vào ô trống trong khai triển \({\left( {a + ...} \right)^3} = {a^2} + 9{a^2}b + 27a{b^2} + ...\) lần lượt là
\(3b\) và \(3{b^3}\).
\(b\) và \(3{b^3}\).
\(3b\) và \(27{b^3}\).
\(3b\) và \(9{b^2}\).
Bài 17 :
Để biểu thức \({x^3} + 6{x^2} + ... + 8\) là lập phương của một tổng thì \(...\) là
\(6x\).
\(8x\).
\(12x\).
\(10x\).