Nội dung từ Loigiaihay.Com
a) Chứng minh rằng: \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right).\)
b) Tính giá trị của \({a^3} + {b^3},\) biết rằng \(a + b = 5\) và \(ab = - 6.\)
Sử dụng hằng đẳng thức kết hợp với nhân đa thức với đa thức.
a) Ta có: \(VP = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} - 3{a^2}b - 3a{b^2} = {a^3} + {b^3} = VT\left( {dpcm} \right)\)
b) Thay \(a + b = 5\) và \(ab = - 6.\) vào biểu thức, ta có
\({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) = {5^3} - 3.\left( { - 6} \right).5 = 215.\)
Vậy giá trị của biểu thức là \(215.\)
Các bài tập cùng chuyên đề
Bài 1 :
Điền vào chỗ trống \({x^3} + 512 = (x + 8)\left( {{x^2} - \left[ {} \right] + 64} \right)\)
Bài 2 :
Với hai số a,b bất kì, thực hiện phép tính
\(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\)
Từ đó rút ra liên hệ giữa \({a^3} + {b^3}\) và \(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\).
Bài 3 :
Bài 4 :
Giải quyết tình huống mở đầu.
Bài 5 :
Cho \(x + y = 3\) và \(xy = 2\). Tính \({x^3} + {y^3}\)
Bài 6 :
Cho \(a\) và \(b\) là hai số thực bất kì.
1. Thực hiện phép tính \(\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right).\)
2. Hãy cho biết \({a^3} + {b^3} = ?\)
Bài 7 :
a) Viết \(8{a^3} + 27\) dưới dạng tích.
b) Viết \(\left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\) dưới dạng tổng.
Bài 8 :
Biểu thức \({x^3} + 64{y^3}\) bằng:
A. \(\left( {x + 4y} \right)\left( {{x^2} - 4xy + 16{y^2}} \right)\)
B. \(\left( {x + 4y} \right)\left( {{x^2} - 4xy + 4{y^2}} \right)\)
C. \(\left( {x + 4y} \right)\left( {{x^2} + 4xy + 16{y^2}} \right)\)
D. \(x + 4y\left( {{x^2} - 8xy + 16{y^2}} \right)\)
Bài 9 :
Thực hiện phép nhân \(\left( {{a^2} - 2a + 4} \right)\left( {a + 2} \right)\), ta nhận được
A. \({a^3} - 8\)
B. \({a^3} + 8\)
C. \({\left( {a - 2} \right)^3}\)
D. \({\left( {a + 2} \right)^3}\)
Bài 10 :
Đa thức \({x^3} + 8{y^3}\) được viết thành tích của hai đa thức:
A. \(x + 2y\) và \({x^2} + 2xy + 4{y^2}\).
B. \(x + 2y\) và \({x^2} - 2xy + 4{y^2}\).
C. \(x - 2y\) và \({x^2} - 2xy + 4{y^2}\).
D. \(x - 2y\) và \({x^2} + 2xy + 4{y^2}\).
Bài 11 :
Rút gọn biểu thức \(A = {\left( {2x + 1} \right)^3}\;-6x\left( {2x + 1} \right)\) ta được:
A. \({x^3}\; + \;8\).
B. \({x^3}\; + \;1\).
C. \(8{x^3}\; + \;1\).
D. \(8{x^3}\;-1\).
Bài 12 :
Chọn phương án đúng nhất để điền vào chỗ trống.
“… bằng tích của tổng hai biểu thức với bình phương thiếu của hiệu hai biểu thức đó.”
Hiệu hai lập phương.
Tổng hai lập phương.
Bài 13 :
Biểu thức cần điền vào chỗ trống để có hằng đẳng thức \({x^3} + 1 = \left( {x + 1} \right)\left( {{x^2} - ... + 1} \right)\) đúng là:
\(x\)
\(-x\)
\(2x\)
\(-2x\)
Bài 14 :
Điền vào chỗ trống: \(\left( {3x + y} \right)\left( {9{x^2} + ... + {y^2}} \right) = 27{x^3} + {y^3}\)
\(3xy\).
\( - 3xy\).
\(6xy\).
\( - 6xy\).
Bài 15 :
Biểu thức \({x^3} + 64\) được viết dưới dạng tích là
\(\left( {x - 4} \right)\left( {{x^2} + 4x + 16} \right)\).
\(\left( {x - 4} \right)\left( {{x^2} + 4x - 16} \right)\)
\(\left( {x + 4} \right)\left( {{x^2} + 4x + 16} \right)\).
\(\left( {x + 4} \right)\left( {{x^2} - 4x + 16} \right)\).