Đề bài

Nghiệm \({x_0}\) của phương trình \(\frac{1}{{x - 2}} - \frac{2}{{x - 1}} = \frac{5}{{\left( {x - 2} \right)\left( {x - 1} \right)}}\) thỏa mãn biểu thức \(S = {x_0}^3 + 2{x_0}^2 + 2024\). Tính giá trị của S.

Đáp án:

Đáp án

Đáp án:

Phương pháp giải

Tìm điều kiện xác định.

Giải phương trình chứa ẩn ở mẫu.

Thay giá trị của x vào biểu thức S để tính.

ĐKXĐ: \(x - 2 \ne 0\) và \(x - 1 \ne 0\) hay \(x \ne 2\) và \(x \ne 1\).

Ta có: \(\frac{1}{{x - 2}} - \frac{2}{{x - 1}} = \frac{5}{{\left( {x - 2} \right)\left( {x - 1} \right)}}\)

\(\begin{array}{l}\frac{{x - 1}}{{\left( {x - 2} \right)\left( {x - 1} \right)}} - \frac{{2\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x - 1} \right)}} = \frac{5}{{\left( {x - 2} \right)\left( {x - 1} \right)}}\\x - 1 - 2\left( {x - 2} \right) = 5\\x - 1 - 2x + 4 = 5\\ - x + 3 = 5\\x = 3 - 5\\x =  - 2\end{array}\)

Giá trị của biểu thức \(S = {x_0}^3 + 2{x_0}^2 + 2024\) tại \({x_0} =  - 2\) là:

\(S = {\left( { - 2} \right)^3} + 2{\left( { - 2} \right)^2} + 2024 \\=  - 8 + 8 + 2024 = 2024.\)

Đáp án: 2024

Các bài tập cùng chuyên đề

Bài 1 :

Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là

  • A.

    \(x =  - 3\)                  

  • B.

    \(x =  - 2\)                  

  • C.

    Vô nghiệm                      

  • D.

    Vô số nghiệm

Xem lời giải >>

Bài 2 :

Trong các khẳng định sau, số khẳng định đúng là:

a) Tập nghiệm của phương trình \(\dfrac{{{x^2} + 3x}}{x} = 0\) là \(\left\{ {0; - 3} \right\}\).

b) Tập nghiệm của phương trình \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\) là \(\left\{ { - 2} \right\}\).

c) Tập nghiệm của phương trình \(\dfrac{{x - 8}}{{x - 7}} = \dfrac{1}{{7 - x}} + 8\) là \(\left\{ 0 \right\}\).

  • A.

    \(1\)    

  • B.

    \(2\)    

  • C.

    \(0\)    

  • D.

     \(3\)

Xem lời giải >>

Bài 3 :

Số nghiệm của phương trình \(\dfrac{{x - 5}}{{x - 1}} + \dfrac{2}{{x - 3}} = 1\) là

  • A.

    \(3\)    

  • B.

    \(2\)    

  • C.

    \(0\)    

  • D.

    \(1\)

Xem lời giải >>

Bài 4 :

Phương trình \(\dfrac{{3x - 5}}{{x - 1}} - \dfrac{{2x - 5}}{{x - 2}} = 1\) có  số nghiệm là

  • A.

    \(1\)    

  • B.

    \(2\)    

  • C.

    \(0\)    

  • D.

    \(3\)

Xem lời giải >>

Bài 5 :

Cho phương trình $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$ . Bạn Long giải phương trình như sau:

Bước 1: ĐKXĐ $x \ne 1;\,x \ne 2$

Bước 2: $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$

\(\dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{ -1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)

Bước 3: Suy ra

\(x - 2 - 7x + 7 =  - 1 \\- 6x =  - 6 \\x = 1\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\).

Chọn câu đúng.

  • A.

    Bạn Long giải sai từ bước \(1\)

  • B.

    Bạn Long giải sai từ bước \(2\)

  • C.

    Bạn Long giải sai từ bước \(3\)

  • D.

     Bạn Long giải đúng.

Xem lời giải >>

Bài 6 :

Cho hai biểu thức : \(A = 1 + \dfrac{1}{{2 + x}}\) và \(B = \dfrac{{12}}{{{x^3} + 8}}\) . Tìm $x$  sao cho \(A = B\) .

  • A.

    \(x = 0\)

  • B.

    \(x = 1\)

  • C.

    \(x =  - 1\)

  • D.

    Cả AB.

Xem lời giải >>

Bài 7 :

Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\). Khẳng định nào sau đây là đúng.

  • A.

    Hai phương trình có cùng điều kiện xác định.

  • B.

    Hai phương trình có cùng số nghiệm

  • C.

    Phương trình \(\left( 2 \right)\) có nhiều nghiệm hơn phương trình \(\left( 1 \right)\)

  • D.

    Hai phương trình tương đương

Xem lời giải >>

Bài 8 :

Biết \({x_0}\) là nghiệm nhỏ nhất của phương trình

\(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}.\) Chọn khẳng định đúng.

  • A.

    \({x_0} > 0\)

  • B.

    \({x_0} <  - 5\)

  • C.

    \({x_0} =  - 10\)

  • D.

    \({x_0} > 5\)

Xem lời giải >>

Bài 9 :

Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là

  • A.

    \(x =  - 4\)                  

  • B.

    \(x =  - 2\)                  

  • C.

    Vô nghiệm                      

  • D.

    Vô số nghiệm

Xem lời giải >>

Bài 10 :

Phương trình \(\dfrac{x}{{x - 5}} - \dfrac{3}{{x - 2}} = 1\)  có nghiệm là

  • A.

    \(x =  - \dfrac{1}{2}\)                     

  • B.

    \(x = \dfrac{5}{2}\)                     

  • C.

    \(x = \dfrac{1}{2}\)                      

  • D.

    \(x =  - \dfrac{5}{2}\)

Xem lời giải >>

Bài 11 :

Số nghiệm của phương trình  \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\)  là

  • A.

    Vô số nghiệm $x \ne \pm 2$        

  • B.

    \(1\)    

  • C.

    \(2\)                            

  • D.

    \(0\)

Xem lời giải >>

Bài 12 :

Tập nghiệm của phương trình \(\dfrac{{x + 2}}{{x - 1}} - 2 = x\) là

  • A.

    \(S = \left\{ { - 2;\,\,2} \right\}\)                              

  • B.

    \(S = \left\{ {1;\,\, - 3} \right\}\)                             

  • C.

    \(S = \left\{ { - 1;\,\,2} \right\}\)                          

  • D.

    \(S = \left\{ { - 1;\,\, - 2} \right\}\)

Xem lời giải >>

Bài 13 :

Phương trình \(\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{3} - \dfrac{{x - 1}}{6} = 2\) có tập nghiệm là

  • A.

    \(S = \left\{ {0;1} \right\}\)                

  • B.

    \(S = \left\{ 4 \right\}\)                

  • C.

    \(S = \emptyset \)                

  • D.

    \(S = \mathbb{R}\)

Xem lời giải >>

Bài 14 :

Tập nghiệm của phương trình \(\dfrac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\) là

  • A.

    \(S = \left\{ {0;1} \right\}\)                       

  • B.

    \(S = \left\{ { - 1} \right\}\)                     

  • C.

    \(S = \left\{ {0; - 1} \right\}\)                 

  • D.

    \(S = \left\{ 0 \right\}\)       

Xem lời giải >>

Bài 15 :

Phương trình \(\dfrac{3}{{1 - 4x}} = \dfrac{2}{{4x + 1}} - \dfrac{{8 + 6x}}{{16{x^2} - 1}}\) có nghiệm là

  • A.

    \(x = \dfrac{1}{2}\)            

  • B.

    \(x = 2\)                  

  • C.

    \(x = 3\)                     

  • D.

    \(x = 1\)

Xem lời giải >>

Bài 16 :

Số nghiệm của phương trình \(\dfrac{3}{{5x - 1}} + \dfrac{2}{{3 - 5x}} = \dfrac{4}{{\left( {1 - 5x} \right)\left( {5x - 3} \right)}}\) là

  • A.

    \(3\)    

  • B.

    \(2\)    

  • C.

    \(0\)    

  • D.

    \(1\)

Xem lời giải >>

Bài 17 :

Cho hai phương trình \(\dfrac{{{x^2} + 2x}}{x} = 0\,\left( 1 \right)\) và \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\,\left( 2 \right)\). Chọn kết luận đúng:

  • A.

    Hai phương trình tương đương.

  • B.

    Hai phương trình không tương đương.

  • C.

    Phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt.

  • D.

    Phương trình \(\left( 2 \right)\) vô nghiệm.

Xem lời giải >>

Bài 18 :

Phương trình \(\dfrac{2}{{x + 1}} + \dfrac{x}{{3x + 3}} = 1\) có số nghiệm là

  • A.

    \(1\)

  • B.

    \(2\)

  • C.

    \(0\)

  • D.

    \(3\)

Xem lời giải >>

Bài 19 :

Cho phương trình \(\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\). Bạn Long giải phương trình như sau:

Bước 1: ĐKXD \(x \ne 1;\,x \ne 2\)

Bước 2: \(\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\)

\( \dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)

Bước 3: Suy ra \(x - 2 - 7x + 7 = 1\)

\( - 6x = - 4 \\x = \dfrac{2}{3}\left( {TM} \right)\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\dfrac{2}{3}} \right\}\).

Chọn câu đúng.

  • A.

    Bạn Long giải sai từ bước \(1\)

  • B.

    Bạn Long giải sai từ bước \(2\)

  • C.

    Bạn Long giải sai từ bước \(3\)

  • D.

    Bạn Long giải đúng.

Xem lời giải >>

Bài 20 :

Cho hai biểu thức: \(A = 1 - \dfrac{1}{{2 - x}}\) và \(B = \dfrac{{12}}{{{x^3} - 8}}\). Giá trị của \(x\) để \(A = B\) là:

  • A.

    \(x = 0\)

  • B.

    \(x = 1\)          

  • C.

    Không có \(x\)

  • D.

    \(x = 2\)

Xem lời giải >>

Bài 21 :

Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{{x^2} - x}} + \dfrac{{2x - 2}}{{{x^2} - 3x + 2}} = 0\). Khẳng định nào sau đây là sai.

  • A.

    Hai phương trình có cùng điều kiện xác định.

  • B.

    Hai phương trình có cùng số nghiệm

  • C.

    Hai phương trình có cùng tập nghiệm

  • D.

    Hai phương trình tương đương

Xem lời giải >>

Bài 22 :

Cho phương trình: \(\dfrac{1}{{{x^2} + 3x + 2}} + \dfrac{1}{{{x^2} + 5x + 6}} + \dfrac{1}{{{x^2} + 7x + 12}} + \dfrac{1}{{{x^2} + 9x + 20}} = \dfrac{1}{3}\).

Tổng bình phương các nghiệm của phương trình trên là:

  • A.

    \( - 48\)

  • B.

    \(48\)

  • C.

    \( - 50\)

  • D.

    \(50\)

Xem lời giải >>

Bài 23 :

Xét phương trình \(\frac{{x + 3}}{x} = \frac{{x + 9}}{{x - 3}}.\left( 2 \right)\)

Hãy thực hiện các yêu cầu sau để giải phương trình (2):

a) Tìm điều kiện xác định của phương trình (2);

b) Quy đồng mẫu hai vế của phương trình (2), rồi khử mẫu;

c) Giải phương trình vừa tìm được;

d) Kết luận nghiệm của phương trình (2).

Xem lời giải >>

Bài 24 :

Giải phương trình \(\frac{1}{{x - 1}} - \frac{{4x}}{{{x^3} - 1}} = \frac{x}{{{x^2} + x + 1}}.\)

Xem lời giải >>

Bài 25 :

Giải các phương trình sau:

a) \(\frac{2}{{2x + 1}} + \frac{1}{{x + 1}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}};\)

b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{{3x}}{{{x^3} + 1}}.\)

Xem lời giải >>

Bài 26 :

Hai người cùng làm chung một công việc thì xong trong 8 giờ. Hai người cùng làm được 4 giờ thì người thứ nhất bị điều đi làm công việc khác. Người thứ hai tiếp tục làm việc trong 12 giờ nữa thì xong công việc. Gọi x là thời gian người thứ nhất làm một mình xong công việc (đơn vị tính là giờ, \(x > 0\)).

a) Hãy biểu thị theo x:

- Khối lượng công việc mà người thứ nhất làm được trong 1 giờ;

- Khối lượng công việc mà người thứ hai làm được trong 1 giờ;

b) Hãy lập phương trình theo x và giải phương trình đó. Sau đó cho biết, nếu làm một mình thì mỗi người phải làm trong bao lâu mới xong công việc đó.

Xem lời giải >>

Bài 27 :

Để loại bỏ x% một loại tảo độc khỏi một hồ nước, người ta ước tính chi phí cần bỏ ra là

\(C\left( x \right) = \frac{{50x}}{{100 - x}}\) (triệu đồng), với \(0 \le x < 100.\)

Nếu bỏ ra 450 triệu đồng, người ta có thể lọai bỏ được bao nhiêu phần trăm loại tảo độc đó?

Xem lời giải >>

Bài 28 :

Giải các phương trình sau:

a) \(\frac{1}{{x + 2}} - \frac{2}{{{x^2} - 2x + 4}} = \frac{{x - 4}}{{{x^3} + 8}};\)

b) \(\frac{{2x}}{{x - 4}} + \frac{3}{{x + 4}} = \frac{{x - 12}}{{{x^2} - 16}}.\)

Xem lời giải >>

Bài 29 :

Giải các phương trình sau:

a) \(\frac{x}{{x - 5}} - \frac{2}{{x + 5}} = \frac{{{x^2}}}{{{x^2} - 25}};\)

b) \(\frac{1}{{x - 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}.\)

Xem lời giải >>

Bài 30 :

Giải các phương trình sau:

a) \(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\);

b) \(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\).

Xem lời giải >>