Nội dung từ Loigiaihay.Com
Cho tam giác ABC. Tìm công thức đúng trong các công thức sau:
\(S = \frac{1}{2}bc\sin A\)
\(S = \frac{1}{2}ac\sin A\)
\(S = \frac{1}{2}bc\sin B\)
\(S = \frac{1}{2}bc\sin C\)
Áp dụng công thức tính diện tích tam giác.
\(S = \frac{1}{2}bc\sin A\).
Đáp án : A
Các bài tập cùng chuyên đề
Bài 1 :
Công viên Hòa Bình (Hà Nội) có dạng hình ngũ giác ABCDE như hình 3.17. Dùng chế dộ tình khoảng cách giữa hai điểm của Google Maps, một người xác định được các khoảng cách như trong hình vẽ. Theo số liệu đó, em hãy tính diện tích của công viên hòa bình.
Bài 2 :
Ta đã biết tính cos A theo độ dài các cạnh của tam giác ABC. Liệu sin A và diện tích S có tính theo độ dài các cạnh của tam giác ABC hay không?
Bài 3 :
Tính diện tích tam giác ABC có \(b = 2,\;\widehat B = {30^o},\;\widehat C = {45^o}\).
Bài 4 :
Cho tam giác ABC với đường cao BD.
a) Biểu thị BD theo AB và sinA.
b) Viết công thức tính diện tích S của tam giác ABC theo b,c, sin A.
Bài 5 :
Cho tam giác ABC với I là tâm đường trong nội tiếp tam giác.
a) Nêu mối liên hệ giữa diện tích tam giác ABC và diện tích các tam giác IBC, ICA, IAB.
b) Tính diện tích tam giác ABC theo r,a,b,c.
Bài 6 :
A. \(S = \frac{1}{2}ca\)
B. \(S = \frac{{ - \sqrt 2 }}{4}ac\)
C. \(S = \frac{{\sqrt 2 }}{4}bc\)
D. \(S = \frac{{\sqrt 2 }}{4}ca\)
Bài 7 :
Cho tam giác ABC có BC = a, AC = b, AB =c và diện tích là S. (Hình 24).
a) Từ định lí cosin, chứng tỏ rằng:
\(\sin A = \frac{2}{{bc}}\sqrt {p(p - a)(p - b)(p - c)} \) ở đó \(p = \frac{{a + b + c}}{2}\)
b) Bằng cách sử dụng công thức \(S = \frac{1}{2}bc\sin A\),hãy chứng tỏ rằng: \(S = \sqrt {p(p - a)(p - b)(p - c)} \)
Bài 8 :
Cho tam giác ABC có AB = 12; \(\widehat B = {60^o}\); \(\widehat C = {45^o}\). Tính diện tích của tam giác ABC.
Bài 9 :
Tính diện tích một cánh buồm hình tam giác. Biết cách buồm đó có chiều dài một cạnh là 3,2 m và hai góc kề cách đó có số đo là \({48^o}\) và \({105^o}\) (Hình 12).
Bài 10 :
Tính diện tích tam giác ABC và bán kính đường tròn ngoại tiếp tam giác ABC trong các trường hợp sau:
a) Các cạnh \(b = 14,c = 35\) và \(\widehat A = {60^o}\)
b) Các cạnh \(a = 4,b = 5,c = 3\)
Bài 11 :
Cho tam giác ABC có BC = a, AC = b, AB = c và (I;r) là đường tròn nội tiếp tam giác (Hình 11).
a) Tính diện tích các tam giác IBC, IAC, IAB theo r và a, b, c.
b) Dùng kết quả trên để chứng minh công thức tính diện tích tam giác ABC: \(S = \frac{{r(a + b + c)}}{2}\)
Bài 12 :
Cho tam giác ABC như Hình 10.
a) Viết công thức tính diện tích S của tam giác ABC theo a và \({h_a}\)
b) Tính \({h_a}\) theo b và sinC.
c) Dùng hai kết quả trên để chứng minh công thức \(S = \frac{1}{2}ab\sin C\)
d) Dùng định lí sin và kết quả ở câu c) để chứng minh công thức \(S = \frac{{abc}}{{4R}}\)
Bài 13 :
Tính diện tích một lá cờ hình tam giác cân có độ dài cạnh bên là 90 cm và góc ở đỉnh là \({35^o}.\)
Bài 14 :
b) Diện tích tam giác ABC
Bài 15 :
Tam giác ABC có AB = 4 cm, AC = 8 cm, \(\widehat {BAC} = {60^o}\). Tính diện tích tam giác ABC.
\({S_{\Delta ABC}} = 8\sqrt 3 \)
\({S_{\Delta ABC}} = 4\sqrt 3 \)
\({S_{\Delta ABC}} = 16\sqrt 3 \)
\({S_{\Delta ABC}} = 8\)
Bài 16 :
Tam giác ABC có AB = 4, BC = 7, \(\widehat B = {150^o}\). Tính diện tích tam giác ABC.
\({S_{\Delta ABC}} = \frac{{7\sqrt 3 }}{2}\)
\({S_{\Delta ABC}} = 14\)
\({S_{\Delta ABC}} = 7\)
\({S_{\Delta ABC}} = 7\sqrt 3 \)
Bài 17 :
Tam giác ABC có AB = 6, AC = 9, \(\widehat A = {60^o}\). Tính diện tích tam giác ABC.
\({S_{\Delta ABC}} = \frac{{27\sqrt 3 }}{2}\)
\({S_{\Delta ABC}} = \frac{{27}}{2}\)
\({S_{\Delta ABC}} = \frac{{27\sqrt 3 }}{4}\)
\({S_{\Delta ABC}} = \frac{{27}}{4}\)
Bài 18 :
Một mảnh đất có dạng hình tứ giác như hình vẽ. Diện tích (làm tròn đến hàng đơn vị) mảnh đất đó là bao nhiêu?
Bài 19 :
Tam giác \(ABC\) có \(a = 2,\,\,b = 3,\,\,c = 4.\) Bán kính đường tròn ngoại tiếp của tam giác \(ABC\) là:
A. \(R = \frac{{\sqrt {15} }}{2}.\)
B. \(R = \frac{7}{{\sqrt {15} }}.\)
C. \(R = \frac{{\sqrt {15} }}{6}.\)
D. \(R = \frac{8}{{\sqrt {15} }}.\)
Bài 20 :
Tam giác \(ABC\) có \(a = 4,\,\,b = 5,\,\,c = 6.\) Độ dài đường cao \({h_b}\) bằng:
A. \(\frac{{3\sqrt 7 }}{2}.\)
B. \(\frac{3}{{2\sqrt 7 }}.\)
C. \(\frac{{3\sqrt 7 }}{4}.\)
D. \(\frac{3}{{4\sqrt 7 }}.\)
Bài 21 :
Cho tam giác \(ABC\) có \(a = 20,\,\,b = 16\) và \({m_a} = 10.\) Diện tích của tam giác bằng:
A. \(92.\)
B. \(100.\)
C. \(96.\)
D. \(88.\)
Bài 22 :
Tam giác \(ABC\) có \(a = 14,\,\,b = 9\) và \({m_a} = 8.\) Độ dài đường cao \({h_a}\) bằng:
A. \(\frac{{24\sqrt 5 }}{7}.\)
B. \(\frac{{12\sqrt 5 }}{7}.\)
C. \(12\sqrt 5 .\)
D. \(24\sqrt 5 .\)
Bài 23 :
Cho tam giác ABC có \(a = 24\)cm, \(b = 26\)cm, \(c = 30\)cm
a) Tính diện tích tam giác ABC
b) Tính bán kính đường tròn nội tiếp của tam giác ABC
Bài 24 :
Cho tam giác MNP có \(MN = 10,MP = 20\) và \(\widehat M = 42^\circ \)
a) Tính diện tích tam giác MNP
b) Gọi O là tâm đường tròn ngoại tiếp tam giác MNP. Tính diện tích tam giác ONP
Bài 25 :
Cho tam giác ABC có trọng tâm G. Chứng minh các tam giác GBC, GAB, GAC có diện tích bằng nhau.
Bài 26 :
Cho tam giác ABC và có các điểm B’, C’ trên các cạnh AB, AC.
Chứng minh \(\frac{{{S_{ABC}}}}{{{S_{AB'C'}}}} = \frac{{AB.AC}}{{AB'.AC'}}\).
Bài 27 :
Tính diện tích bề mặt của một miếng bánh mì kẹp kebab hình tam giác có hai cạnh lần lượt là 10 cm, 12 cm và góc tạo bởi hai cạnh đó là \(35^\circ \).
Bài 28 :
Cho tam giác ABC vuông cân tại A có \(AB = AC = 30\) cm. Hai đường trung tuyến BF và CE cắt nhau tại G. Diện tích của tam giác GFC là:
A. 50 \(cm^2\)
B. \(50\sqrt 2 \) \(cm^2\)
C. 75 \(cm^2\)
D. \(15\sqrt {105} \) \(cm^2\)
Bài 29 :
Tam giác ABC có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh CA lên 3 lần và giữ nguyên độ lớn góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
A. 2S
B. 3S
C. 4S
D. 6S
Bài 30 :
Từ các công thức tính diện tích tam giác đã được học, hãy chứng minh rằng, trong tam giác ABC, ta có:
\(r = \frac{{\sqrt {(b + c - a)(c + a - b)(a + b - c)} }}{{2\sqrt {a + b + c} }}\)