Nội dung từ Loigiaihay.Com
Cho đa thức P thỏa mãn \(\left( {x - 1} \right)P = {x^3} - 1\). Khi đó đa thức P là
\({x^2} - x + 1\).
\({x^2} + 2x + 1\).
\({x^2} + x + 1\).
\({x^2} - 2x + 1\).
Áp dụng hằng đẳng thức hiệu hai lập phương \({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right)\) để thực hiện phép chia được dễ dàng.
Ta có:
\(\begin{array}{l}\left( {x - 1} \right)P = {x^3} - 1\\\left( {x - 1} \right)P = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\\P = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right):\left( {x - 1} \right)\\P = {x^2} + x + 1\end{array}\)
Đáp án C
Đáp án : C
Các bài tập cùng chuyên đề
Bài 1 :
Với hai số \(a,b\) bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức lập phương của một tổng để tính \({a^3} + \left( { - {b^3}} \right)\).
Từ đó rút ra liên hệ giữa \({a^3} - {b^3}\) và \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\).
Bài 2 :
Từ một khối lập phương có cạnh bằng \(2x + 1\), ta cắt bỏ một khối lập phương có cạnh bằng \(x + 1\) (xem Hình 5). Tính thể tích phần còn lại, viết kết quả dưới dạng đa thức.
Bài 3 :
Cho \(a\) và \(b\) là hai số thực bất kì.
a) Thực hiện phép tính \(\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
b) \({a^3} - {b^3} = ?\)
Bài 4 :
a) Tính \(\left( {a - 4} \right)\left( {{a^2} + 4a + 16} \right).\)
b) Viết \(64{x^3} - 27{y^3}\) dưới dạng tích.
Bài 5 :
Đa thức \({x^3} - 8\) được phân tích thành tích của hai đa thức
A.\(x - 2\) và \({x^2} - 2x - 4\)
B. \(x - 2\) và \({x^2} + 2x - 4\)
C. \(x - 2\) và \({x^2} + 2x + 4\)
D. \(x - 2\) và \({x^2} - 2x + 4\)
Bài 6 :
Đa thức \(8{x^3} - 27{y^3}\) được viết thành tích của hai đa thức:
A. \(2x + 3y\) và \(4{x^2} - 6xy + 9{y^2}\).
B. \(2x + 3y\) và \(4{x^2} + 6xy + 9{y^2}\).
C. \(2x-3y\) và \(4{x^2} - 6xy + 9{y^2}\).
D. \(2x-3y\) và \(4{x^2} + 6xy + 9{y^2}\).
Bài 7 :
Vế phải của hằng đẳng thức: \(x^3−y^3=....\) là:
\((x−y)(x^2+xy+y^2)\)
\((x+y)(x^2+xy+y^2)\)
\((x−y)(x^2-xy+y^2)\)
\((x−y)(x^2+2xy+y^2)\)
Bài 8 :
Biểu thức \(8x^3−\frac{1}{8}\) bằng
\(\left(2x−\frac{1}{2}\right) \left(4x^2+x+\frac{1}{4}\right)\)
\(\left(2x−\frac{1}{2}\right) \left(4x^2-x+\frac{1}{4}\right)\)
\(\left(8x−\frac{1}{2}\right) \left(16x^2+2x+\frac{1}{4}\right)\)
\(\left(2x−\frac{1}{2}\right) \left(4x^2+2x+\frac{1}{4}\right)\)
Bài 9 :
Biểu thức \(\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right)\) là dạng phân tích đa thức thành nhân tử của đa thức
\({\left( {x - 2y} \right)^3}\).
\({\left( {x + 2y} \right)^3}\).
\({x^3} - 8{y^3}\).
\({x^3} + 8{y^3}\).
Bài 10 :
Cho đa thức P thỏa mãn \(\left( {x - 1} \right).P = {x^3} - 1\). Khi đó đa thức P là:
\({x^2} - x + 1\).
\({x^2} + 2x + 1\).
\({x^2} + x + 1\).
\({x^2} - 2x + 1\).