Nội dung từ Loigiaihay.Com
Cho hàm số f(x) liên tục trên đoạn [a;b]. Hãy chọn mệnh đề sai dưới đây.
\(\int\limits_a^b {f(x)dx} = - \int\limits_b^a {f(x)dx} \)
\(\int\limits_a^b {kdx} = k(b - a)\), \(\forall k \in \mathbb{R}\)
\(\int\limits_a^b {f(x)dx} = \int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} \), \(c \in [a;b]\)
\(\int\limits_a^b {f(x)dx} = \int\limits_b^a {f(x)dx} \)
Áp dụng tính chất của tích phân.
Ta có \(\int\limits_a^b {f(x)dx} = - \int\limits_b^a {f(x)dx} \) nên \(\int\limits_a^b {f(x)dx} = \int\limits_b^a {f(x)dx} \) sai.
Đáp án : D
Các bài tập cùng chuyên đề
Bài 1 :
Tính \(\int\limits_0^3 {\left| {2x - 3} \right|dx} \).
Bài 2 :
Tính các tích phân sau:
a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx} \);
b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx} \);
c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \).
Bài 3 :
Cho \(\int\limits_0^3 {f\left( x \right)dx = 5} \) và \(\int\limits_0^3 {g\left( x \right)dx = 2} \). Tính:
a) \(\int\limits_0^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \);
b) \(\int\limits_0^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \);
c) \(\int\limits_0^3 {3f\left( x \right)dx} \);
d) \(\int\limits_0^3 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).
Bài 4 :
Tính:
a) \(\int\limits_0^3 {{{\left( {3x - 1} \right)}^2}dx} \);
b) \(\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \sin x} \right)dx} \);
c) \(\int\limits_0^1 {\left( {{e^{2x}} + 3{x^2}} \right)dx} \);
d) \(\int\limits_{ - 1}^2 {\left| {2x + 1} \right|dx} \).
Bài 5 :
Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là \(v\left( t \right) = {t^2} - t - 6\) (m/s).
a) Tìm độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\), tức là tính \(\int\limits_1^4 {v\left( t \right)dt} \).
b) Tìm tổng quãng đường vật đi được trong khoảng thời gian này, tức là tính \(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} \).
Bài 6 :
Tính các tích phân sau:
a) \(I = \int\limits_0^2 {\left| {{x^2} - x} \right|dx} \);
b) \(I = \int\limits_0^1 {{{\left( {2x - 1} \right)}^3}dx} \);
c) \(I = \int\limits_0^{\frac{\pi }{4}} {{{\left( {3\sin x - \frac{2}{{{{\cos }^2}x}}} \right)}^3}dx} \);
d) \(I = \int\limits_1^2 {\left( {2{e^x} - \frac{1}{x}} \right)dx} \).
Bài 7 :
So sánh \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \)
Bài 8 :
So sánh: \(\int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} \) và \(\int\limits_0^2 {2xdx} \)
Bài 9 :
So sánh:
a) \(\int\limits_0^1 {(2x + 3)dx} \) và \(\int\limits_0^1 {2xdx} + \int\limits_0^1 {3dx} \)
b) \(\int\limits_0^1 {(2x - 3)dx} \) và \(\int\limits_0^1 {2xdx} - \int\limits_0^1 {3dx} \)
Bài 10 :
Cho \(\int\limits_0^4 {f(x)dx} = 4,\int\limits_3^4 {f(x)dx} = 6\). Tính \(\int\limits_0^3 {f(x)dx} \)
Bài 11 :
Biết rằng tốc độ \(v\) (km/phút) của một ca nô cao tốc thay đổi theo thời gian \(t\) (phút) như sau: \(v\left( t \right) = \left\{ {\begin{array}{*{20}{c}}{0,5t{\rm{ }}\left( {0 \le t \le 2} \right)}\\{{\rm{ }}1{\rm{ }}\left( {2 \le t < 15} \right)}\\{4 - 0,2t{\rm{ }}\left( {15 \le t \le 20} \right)}\end{array}} \right.\). Tính quãng đường ca nô di chuyển được trong khoảng thời gian từ 0 đến 20 phút.
Bài 12 :
Tính
a) \(\int\limits_{ - 1}^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} - \int\limits_1^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} \)
b) \(\int\limits_0^3 {\left| {x - 1} \right|dx} \)
c) \(\int\limits_0^\pi {\left| {\cos x} \right|dx} \)
Bài 13 :
Cho hàm số \(f\left( x \right) = 2x\). Tính và so sánh kết quả:
\(\int\limits_0^2 {f\left( x \right)dx} \) và \(\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \)
Bài 14 :
Tại một nhà máy sản xuất một loại phân bón, gọi \(P\left( x \right)\) là lợi nhuận (tính theo triệu đồng) thu được từ việc bán \(x\) tấn sản phẩm trong một tuần. Khi đó, đạo hàm \(P'\left( x \right)\) gọi là lợi nhuận cận biên, cho biết tốc độ tăng lợi nhuận theo lượng sản phẩm bán được. Giả sử lợi nhuận cận biên (tính theo triệu đồng trên tấn) của nhà máy được ước lượng bởi công thức \(P'\left( x \right) = 16 - 0,02x\) với \(0 \le x \le 100\). Tính lợi nhuận nhà máy thu được khi bán 90 tấn sản phẩm trong tuần. Biết rằng nhà máy lỗ 25 triệu đồng nếu không bán được lượng sản phẩm nào trong tuần.
Bài 15 :
Tính các tích phân sau:
a) \(\int\limits_1^2 {\frac{{x - 1}}{{{x^2}}}} dx\)
b) \(\int\limits_0^\pi {\left( {1 + 2{{\sin }^2}\frac{x}{2}} \right)dx} \)
c) \(\int\limits_{ - 2}^1 {{{\left( {x - 2} \right)}^2}dx} + \int\limits_{ - 2}^1 {\left( {4x - {x^2}} \right)dx} \)
Bài 16 :
a) Tìm một nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {x^2} + {e^x}\). Từ đó, tính \(\int\limits_0^1 {\left( {{x^2} + {e^x}} \right)dx} \).
b) Tính \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {{e^x}dx} \)
c) Có nhận xét gì về hai kết quả trên?
Bài 17 :
Tính
a) \(\int\limits_{ - 1}^1 {4{x^7}dx} \)
b) \(\int\limits_{ - 2}^{ - 1} {\frac{{ - 3}}{{10x}}dx} \)
c) \(\int\limits_0^2 {\frac{{{5^{x - 1}}}}{2}dx} \)
Bài 18 :
a) Tìm một nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = 6{x^5}\). Từ đó, tính \(I = \int\limits_0^2 {6{x^5}dx} \).
b) Tính \(J = \int\limits_0^2 {{x^5}} dx\).
c) Có nhận xét gì về giá trị của \(I\) và \(6J\)?
Bài 19 :
Biết rằng \(\int\limits_0^2 {f\left( x \right)dx} = - 4\). Giá trị của \(\int\limits_0^2 {\left[ {3x - 2f\left( x \right)} \right]dx} \) bằng
A. \( - 2\)
B. \(12\)
C. \(14\)
D. \(22\)
Bài 20 :
Cho \(\int\limits_0^5 {f\left( x \right)dx} = 6\) và \(\int\limits_0^5 {g\left( x \right)dx} = 2\). Hãy tính:
a) \(\int\limits_0^5 {\left[ {2f\left( x \right) + 3g\left( x \right)} \right]dx} \);
b) \(\int\limits_0^5 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).
Bài 21 :
Cho \(\int\limits_0^2 {f\left( x \right)dx} = 3\) và \(\int\limits_2^5 {f\left( x \right)dx} = 7\). Giá trị của \(\int\limits_0^5 {f\left( x \right)dx} \) là
A. 10.
B. 4.
C. -4.
D. 3.
Bài 22 :
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^4 {f\left( x \right)dx} = 4\). Giá trị của tích phân \(\int\limits_0^4 {2f\left( x \right)dx} \) là
A. 2.
B. 4.
C. 8.
D. 16.
Bài 23 :
Nếu \(\int\limits_0^1 {f\left( x \right)dx} = 4\) thì \(\int\limits_0^1 {2f\left( x \right)dx} \) bằng:
A. 16.
B. 4.
C. 2.
D. 8.
Bài 24 :
Nếu \(\int\limits_1^2 {f\left( x \right)dx} = - 2\) và \(\int\limits_2^3 {f\left( x \right)dx} = 1\) thì \(\int\limits_1^3 {f\left( x \right)dx} \) bằng:
A. ‒3.
B. ‒1.
C. 1.
D. 3.
Bài 25 :
Nếu \(\int\limits_2^3 {f\left( x \right)dx} = 3\) và \(\int\limits_2^3 {g\left( x \right)dx} = 1\) thì \(\int\limits_2^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \) bằng:
A. 4.
B. 2.
C. ‒2.
D. 3.
Bài 26 :
Cho \(\int\limits_{ - 2}^1 {f\left( x \right)dx} = 5\) và \(\int\limits_{ - 2}^1 {g\left( x \right)dx} = - 4\). Tính:
a) \(\int\limits_1^{ - 2} {f\left( x \right)dx} \);
b) \(\int\limits_{ - 2}^1 { - 4f\left( x \right)dx} \);
c) \(\int\limits_{ - 2}^1 {\frac{{ - 2g\left( x \right)}}{3}dx} \);
d) \(\int\limits_{ - 2}^1 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \);
e) \(\int\limits_{ - 2}^1 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \);
g) \(\int\limits_{ - 2}^1 {\left[ {3f\left( x \right) - 5g\left( x \right)} \right]dx} \).
Bài 27 :
Cho \(\int\limits_{ - 1}^3 {f\left( x \right)dx} = 2,\int\limits_2^3 {f\left( x \right)dx} = - 5\). Tính tích phân \(\int\limits_{ - 1}^2 {f\left( x \right)dx} \).
Bài 28 :
Biết \(F\left( x \right) = {e^x}\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\). Giá trị của \(\int\limits_0^1 {\left[ {3 + f\left( x \right)} \right]dx} \) bằng:
A. \(2 + e\).
B. \(3 + e\).
C. 3.
D. \(3{\rm{x}} + {e^x}\).
Bài 29 :
Cho \(\int\limits_0^1 {\left[ {2f\left( x \right) - 1} \right]dx} = 3\). Tính \(\int\limits_0^1 {f\left( x \right)dx} \).
Bài 30 :
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thoả mãn \(\int\limits_0^4 {f\left( x \right)dx} = - 2;\int\limits_0^5 {f\left( t \right)dt} = 4\). Tính \(\int\limits_4^5 {f\left( x \right)dx} \).